1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
|
#!/usr/bin/env ruby
$VERBOSE=true
# This script generates a fortran source file that uses the ISO_C_BINDINGS to interface to the functions defined in the given C header file.
# The basic approach is, that every C function is wrapped in a fortran function/subroutine, which internally uses a bind(c) interface to the C code.
# This wrapper based approach has the advantage that the wrapper is free to provide a true fortran interface
# that enables full type checking of its arguments; the pure bind(c) interface would not be able to distinguish
# between different opaque pointer types, for instance, nor would it be able to infer the size of a static string returned by a C function.
#
# Within this header file, the following constructs are recognized:
#
# * #define FOO 123
# * typedef struct foo foo;
# * typedef struct foo { ... } foo;
# * ... foo(...);
#
# These constructs are used to divide a source line into parts that are recognizable by the templates defined below.
# A function definition, for instance, is divided into a return type, a function name, and a number of argument definitions,
# the return type and argument descriptions are matched against templates which define the translation of these parts into fortran code.
# Note that all these constructs must be one-liners since processing in this script is line based.
#
# Every template is a hash that contains an entry :regex, which is used to match it against the corresponding C declaration.
# There are a couple of placeholders that may be used within these regex strings, they are expanded by matchTemplate() before a Regexp object is constructed from the string in :regex.
# These placeholders are:
# <integerTypes> matches the C integer types that can be used within Fortran by prefixing 'c_' to the type
# <floatTypes> matches the C floating point types that can be used within Fortran by prefixing 'c_' to the type
# <opaqueTypes> matches all the opaque types defined within the header
# <publicTypes> matches all the public types defined within the header
#
# In the case of argument and type templates, this :regex may contain one or more named subexpressions /(?<name>...)/,
# which can be included in the other fields by means of a corresponding placeholder "<name>".
# The names of the subexpressions that are to be substituted in this way need to be listed in the :placeholders key.
# This is usually used to capture the variable name, and then use "<name>_foo" to derive fortran variable names from the argument name,
# but it may also be used to capture the size of an array declaration.
# Since fortran uses so many keywords that can easily conflict with C argument names, it is a good idea not to use a naked "<name>";
# always append something to it as in "<name>_dummy"
#
# Argument templates must provide the following fields:
# :regex A regex that matches the whole definition of a C argument. Make sure it only matches the cases that the template can actually handle!
# :placeholders An array of the name of the named subexpressions used in the regex. For the :regex => /(?<foo>.),(?<bar>.)/ you would use :placeholders => %w[foo bar]
# :dummyName The name of the fortran dummy argument. Both the wrapper function and the `bind(c)` interface use the same name.
# :acceptAs The declaration of the dummy argument in the fortran wrapper.
# :helperVars Declarations of additional variables needed to provide the desired functionality in the wrapper function.
# :precallStatements Code that needs to be executed before the C function is called.
# :callExpression The actual argument that the wrapper passes to the C function.
# :passAs The declaration of the dummy argument in the `bind(c)` interface.
# :postcallStatements Code that needs to be executed after the C function returns.
#
#
#
# Return type templates are similar to argument templates, but they have to deal with the fact that fortran differentiates between subroutines and functions. Because of this, return type templates add the :isVoid key which is only true if the C function returns `void`.
#
# Return type templates must provide the following fields:
# :regex A regex that matches the whole definition of a C return type. Make sure it only matches the cases that the template can actually handle!
# :isVoid Always false, except for the template for `void`.
# :returnAs The type of the fortran wrapper function.
# :helperVars Declarations of additional variables needed to provide the desired functionality in the wrapper function.
# :precallStatements Code that needs to be executed before the C function is called.
# :receiveAs The type of the `bind(c)` interface function.
# :assignVariable The expression that the result of the C function is assigned to.
# :postcallStatements Code that needs to be executed after the C function returns.
#
#
#
# Type templates are used for the variables in public `struct` definitions. These are much simpler as they only have to translate a C variable declaration into an interoperable fortran variable declaration.
#
# Type templates must provide the following fields:
# :regex A regex that matches the whole C variable definition. Make sure it only matches the cases that the template can actually handle!
# :placeholders An array of the name of the named subexpressions used in the regex. Same semantics as in an argument template.
# :declareAs The declaration of the corresponding fortran derived type member.
#
#
#
# The wrapper that is generated for a non-void C function looks like this:
#
# function fname(:dummyName...) result(result)
# :returnAs :: result
# :acceptAs...
# :helperVars...
# interface
# :receiveAs function lib_fname(:dummyName...) bind(c, name = 'fname')
# import <importConstants>
# :passAs...
# end function lib_fname
# end interface
# :precallStatements
# :assignVariable = lib_fname(:callExpression)
# :postcallStatements
# end function fname
#
#
#
# The wrapper that is generated for a void C function looks like this:
#
# subroutine fname(:dummyName...)
# :acceptAs...
# :helperVars...
# interface
# subroutine lib_fname(:dummyName...) bind(c, name = 'fname')
# import <importConstants>
# :passAs...
# end subroutine lib_fname
# end interface
# :precallStatements
# call lib_fname(:callExpression)
# :postcallStatements
# end subroutine fname
$debug = 0
$wrapperResultVarName = 'f_result'
####################################################################################################
# Template definitions #############################################################################
####################################################################################################
$argumentTemplates =
[
{ #Dummy for declarations using foo(void).
:regex => '^\s*void\s*$',
:placeholders => %w[],
:dummyName => '',
:acceptAs => '',
:helperVars => '',
:precallStatements => '',
:callExpression => '',
:passAs => '',
:postcallStatements => ''
}, { #<integerTypes>
:regex => '^\s*(?<type><integerTypes>)\s+(?<name>\w+)\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(c_<type>), value :: <name>_dummy',
:helperVars => '',
:precallStatements => '',
:callExpression => '<name>_dummy',
:passAs => 'integer(c_<type>), value :: <name>_dummy',
:postcallStatements => ''
}, { #logical
:regex => '^\s*(?<type>bool)\s+(?<name>\w+)\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'logical(c_<type>), value :: <name>_dummy',
:helperVars => '',
:precallStatements => '',
:callExpression => '<name>_dummy',
:passAs => 'logical(c_<type>), value :: <name>_dummy',
:postcallStatements => ''
}, { #<floatTypes>
:regex => '^\s*(?<type><floatTypes>)\s+(?<name>\w+)\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'real(c_<type>), value :: <name>_dummy',
:helperVars => '',
:precallStatements => '',
:callExpression => '<name>_dummy',
:passAs => 'real(c_<type>), value :: <name>_dummy',
:postcallStatements => ''
},
#Optional pointer arguments. These are wrapped by optional
#arguments which have to be named in calling code, which is why we
#don't use the _dummy suffix for them.
{ #<integerTypes>*
:regex => '^\s*(?<type><integerTypes>)\s*\*\s*(?<name>\w+)_optional\s*$',
:placeholders => %w[name type],
:dummyName => '<name>',
:acceptAs => 'integer(c_<type>), optional, target, intent(inout) :: <name>',
:helperVars => "type(c_ptr) :: <name>_cptr",
:precallStatements => "<name>_cptr = c_null_ptr\nif(present(<name>)) <name>_cptr = c_loc(<name>)",
:callExpression => '<name>_cptr',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => ""
},
{ #<floatTypes>*
:regex => '^\s*(?<type><floatTypes>)\s*\*\s*(?<name>\w+)_optional\s*$',
:placeholders => %w[name type],
:dummyName => '<name>',
:acceptAs => 'real(c_<type>), target, optional, intent(inout) :: <name>',
:helperVars => "type(c_ptr) :: <name>_cptr",
:precallStatements => "<name>_cptr = c_null_ptr\nif(present(<name>)) <name>_cptr = c_loc(<name>)",
:callExpression => '<name>_cptr',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => ""
},
{ #unsigned char (*<name>)[<size>]
:regex => '^\s*unsigned\s+char\s*\(\s*\*\s*(?<name>\w+)_optional\s*\)\s*\[\s*(?<size>[^\]]+)\s*\]\s*$',
:placeholders => %w[name size],
:dummyName => '<name>',
:acceptAs => 'integer(kind = c_signed_char), target, optional, intent(inout) :: <name>(<size>)',
:helperVars => "type(c_ptr) :: <name>_cptr",
:precallStatements => "<name>_cptr = c_null_ptr\nif(present(<name>)) <name>_cptr = c_loc(<name>)",
:callExpression => '<name>_cptr',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => ""
},
{ #<integerTypes> []
:regex => '^\s*(?<type><integerTypes>)\s*(?<name>\w+)_optional\[\]\s*$',
:placeholders => %w[name type],
:dummyName => '<name>',
:acceptAs => 'integer(c_<type>), target, optional, intent(inout) :: <name>(*)',
:helperVars => "type(c_ptr) :: <name>_cptr",
:precallStatements => "<name>_cptr = c_null_ptr\nif(present(<name>)) <name>_cptr = c_loc(<name>)",
:callExpression => '<name>_cptr',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => ""
}, { #<floatTypes> []
:regex => '^\s*(?<type><floatTypes>)\s*(?<name>\w+)_optional\[\]\s*$',
:placeholders => %w[name type],
:dummyName => '<name>',
:acceptAs => 'real(c_<type>), target, optional, intent(inout) :: <name>(*)',
:helperVars => "type(c_ptr) :: <name>_cptr",
:precallStatements => "<name>_cptr = c_null_ptr\nif(present(<name>)) <name>_cptr = c_loc(<name>)",
:callExpression => '<name>_cptr',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => ""
}, { #unsigned char <name>[<size>]
:regex => '^\s*unsigned\s+char\s*(?<name>\w+)_optional\s*\[\s*(?<size>[^\]]+)\s*\]\s*$',
:placeholders => %w[name size],
:dummyName => '<name>',
:acceptAs => 'integer(kind = c_signed_char), target, optional, intent(inout) :: <name>(<size>)',
:helperVars => "type(c_ptr) :: <name>_cptr",
:precallStatements => "<name>_cptr = c_null_ptr\nif(present(<name>)) <name>_cptr = c_loc(<name>)",
:callExpression => '<name>_cptr',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => ""
},
{ #optional char *
:regex => '^\s*char\s*(?:\*\s*(?<name>\w+)_optional|(?<name>\w+)_optional\[\])\s*$',
:placeholders => %w[name],
:dummyName => '<name>',
:acceptAs => 'character(kind = c_char, len = *), optional, intent(inout) :: <name>',
:helperVars => "character(kind = c_char), allocatable, target :: <name>_temp(:)\n" +
"integer :: <name>_i\n" +
"type(c_ptr) :: <name>_cptr",
:precallStatements => "if (present(<name>)) then\n" +
"\tallocate(<name>_temp(len(<name>) + 1))\n" +
"\t<name>_temp(len(<name>) + 1) = c_null_char\n" +
"\tdo <name>_i = len(<name>), 1, -1\n" +
"\t\tif(<name>(<name>_i:<name>_i) /= ' ') exit\n" +
"\t\t<name>_temp(<name>_i) = c_null_char\n" +
"\tend do\n" +
"\tdo <name>_i = <name>_i, 1, -1\n" +
"\t\t\t<name>_temp(<name>_i) = <name>(<name>_i:<name>_i)\n" +
"\tend do\n" +
"\t<name>_cptr = c_loc(<name>_temp)\n" +
"else\n" +
"\t<name>_cptr = c_null_ptr\n" +
"end if",
:callExpression => '<name>_cptr',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => "if (present(<name>)) then\n" +
"\tdo <name>_i = 1, len(<name>)\n" +
"\t\tif(<name>_temp(<name>_i) == c_null_char) exit\n" +
"\t\t<name>(<name>_i:<name>_i) = <name>_temp(<name>_i)\n" +
"\tend do\n" +
"\tdo <name>_i = <name>_i, len(<name>)\n" +
"\t\t<name>(<name>_i:<name>_i) = ' '\n" +
"\tend do\n" +
"end if"
},
{ #optional const char *
:regex => '^\s*const\s+char\s*(?:\*\s*(?<name>\w+)_optional|(?<name>\w+)_optional\[\])\s*$',
:placeholders => %w[name],
:dummyName => '<name>',
:acceptAs => 'character(kind = c_char, len = *), optional, intent(in) :: <name>',
:helperVars => "character(kind = c_char), allocatable, target :: <name>_temp(:)\n" +
"integer :: <name>_i\n" +
"type(c_ptr) :: <name>_cptr",
:precallStatements => "if (present(<name>)) then\n" +
"\tallocate(<name>_temp(len(<name>) + 1))\n" +
"\t<name>_temp(len(<name>) + 1) = c_null_char\n" +
"\tdo <name>_i = len(<name>), 1, -1\n" +
"\t\tif(<name>(<name>_i:<name>_i) /= ' ') exit\n" +
"\t\t<name>_temp(<name>_i) = c_null_char\n" +
"\tend do\n" +
"\tdo <name>_i = <name>_i, 1, -1\n" +
"\t\t\t<name>_temp(<name>_i) = <name>(<name>_i:<name>_i)\n" +
"\tend do\n" +
"\t<name>_cptr = c_loc(<name>_temp)\n" +
"else\n" +
"\t<name>_cptr = c_null_ptr\n" +
"end if",
:callExpression => '<name>_cptr',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => ""
},
#Array arguments. These are marked by a `_vec` suffix by convention.
#Since it's near impossible to write regexs that only match names that do *not* end in a given suffix,
#these templates must precede the more general templates for pointer arguments.
#That way, we can override the more general template with the more special one if both match.
{ #<integerTypes>* <name>_vec
:regex => '^\s*(?<type><integerTypes>)\s*(?:\*\s*(?<name>\w+_vec)|(?<name>\w+)\[\])\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(c_<type>), intent(inout) :: <name>_dummy(*)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(c_<type>), intent(inout) :: <name>_dummy(*)',
:postcallStatements => ""
}, { #<floatTypes>* <name>_vec
:regex => '^\s*(?<type><floatTypes>)\s*(?:\*\s*(?<name>\w+_vec)|(?<name>\w+)\[\])\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'real(c_<type>), intent(inout) :: <name>_dummy(*)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'real(c_<type>), intent(inout) :: <name>_dummy(*)',
:postcallStatements => ""
}, { #unsigned char <name>[<size>]
:regex => '^\s*unsigned\s+char\s+(?<name>\w+)\s*\[\s*(?<size>[^\]]+)\s*\]\s*$',
:placeholders => %w[name size],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(kind = c_signed_char), intent(inout) :: <name>_dummy(<size>)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(kind = c_signed_char), intent(inout) :: <name>_dummy(<size>)',
:postcallStatements => ""
}, { #unsigned char <name>[]
:regex => '^\s*unsigned\s+char\s+(?<name>\w+)\s*\[\]\s*$',
:placeholders => %w[name],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(kind = c_signed_char), intent(inout) :: <name>_dummy(*)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(kind = c_signed_char), intent(inout) :: <name>_dummy(*)',
:postcallStatements => ""
}, { #const <integerTypes>* <name>_vec
:regex => '^\s*const\s+(?<type><integerTypes>)\s*(?:\*\s*(?<name>\w+_vec)|(?<name>\w+)\[\])\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(c_<type>), intent(in) :: <name>_dummy(*)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(c_<type>), intent(in) :: <name>_dummy(*)',
:postcallStatements => ""
}, { #const <floatTypes>* <name>_vec
:regex => '^\s*const\s+(?<type><floatTypes>)\s*(?:\*\s*(?<name>\w+_vec)|(?<name>\w+)\[\])\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'real(c_<type>), intent(in) :: <name>_dummy(*)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'real(c_<type>), intent(in) :: <name>_dummy(*)',
:postcallStatements => ""
}, { #const unsigned char <name>[]
:regex => '^\s*(const\s+unsigned\s+char|unsigned\s+char\s+const)\s+(?<name>\w+)\s*\[\]\s*$',
:placeholders => %w[name],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(kind = c_signed_char), intent(in) :: <name>_dummy(*)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(kind = c_signed_char), intent(in) :: <name>_dummy(*)',
:postcallStatements => ""
}, { #const unsigned char <name>[<size>]
:regex => '^\s*(const\s+unsigned\s+char|unsigned\s+char\s+const)\s+(?<name>\w+)\s*\[\s*(?<size>[^\]]+)\s*\]\s*$',
:placeholders => %w[name size],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(kind = c_signed_char), intent(in) :: <name>_dummy(<size>)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(kind = c_signed_char), intent(in) :: <name>_dummy(<size>)',
:postcallStatements => ""
}, { #const <integerTypes> <name>[<lineCount>][<lineSize>]
:regex => '^\s*const\s+(?<type><integerTypes>)\s+(?<name>\w+)\s*\[\s*(?<lineCount>[^\]]+)\s*\]\s*\[\s*(?<lineSize>[^\]]+)\s*\]\s*$',
:placeholders => %w[name type lineCount lineSize],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(c_<type>), intent(in) :: <name>_dummy(<lineSize>, <lineCount>)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(c_<type>), intent(in) :: <name>_dummy(<lineSize>, <lineCount>)',
:postcallStatements => ""
}, { #const <integerTypes> <name>[][<lineSize>]
:regex => '^\s*const\s+(?<type><integerTypes>)\s+(?<name>\w+)\s*\[\s*\]\s*\[\s*(?<lineSize>[^\]]+)\s*\]\s*$',
:placeholders => %w[name type lineSize],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(c_<type>), intent(in) :: <name>_dummy(<lineSize>, *)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(c_<type>), intent(in) :: <name>_dummy(<lineSize>, *)',
:postcallStatements => ""
},
#Non-optional pointer arguments. These match both pointers and
#arrays, so they must appear after the more special array templates.
{ #<integerTypes>*
:regex => '^\s*(?<type><integerTypes>)\s*\*\s*(?<name>\w+)\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(c_<type>), intent(inout) :: <name>_dummy',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(c_<type>), intent(inout) :: <name>_dummy',
:postcallStatements => ""
}, { #<floatTypes>*
:regex => '^\s*(?<type><floatTypes>)\s*\*\s*(?<name>\w+)\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'real(c_<type>), intent(inout) :: <name>_dummy',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'real(c_<type>), intent(inout) :: <name>_dummy',
:postcallStatements => ""
}, { #unsigned char (*<name>)[<size>]
:regex => '^\s*unsigned\s+char\s*\(\s*\*\s*(?<name>\w+)\s*\)\s*\[\s*(?<size>[^\]]+)\s*\]\s*$',
:placeholders => %w[name size],
:dummyName => '<name>_dummy',
:acceptAs => 'integer(kind = c_signed_char), intent(inout) :: <name>(<size>)',
:helperVars => "",
:precallStatements => "",
:callExpression => '<name>_dummy',
:passAs => 'integer(kind = c_signed_char), intent(inout) :: <name>(<size>)',
:postcallStatements => ""
},
#String arguments.
{ #char* Unsafe buffer passing
:regex => '^\s*char\s*\*\s*(?<name>\w+)\s*$',
:placeholders => %w[name],
:dummyName => '<name>_dummy',
:acceptAs => 'character(kind = c_char, len = *), intent(inout) :: <name>_dummy',
:helperVars => "character(kind = c_char) :: <name>_temp(len(<name>_dummy) + 1)\n" +
"integer :: <name>_i",
:precallStatements => "<name>_temp(len(<name>_dummy) + 1) = c_null_char\n" +
"do <name>_i = len(<name>_dummy), 1, -1\n" +
"\tif(<name>_dummy(<name>_i:<name>_i) /= ' ') exit\n" +
"\t<name>_temp(<name>_i) = c_null_char\n" +
"end do\n" +
"do <name>_i = <name>_i, 1, -1\n" +
"\t\t<name>_temp(<name>_i) = <name>_dummy(<name>_i:<name>_i)\n" +
"end do",
:callExpression => '<name>_temp',
:passAs => 'character(kind = c_char) :: <name>_dummy(*)',
:postcallStatements => "do <name>_i = 1, len(<name>_dummy)\n" +
"\tif(<name>_temp(<name>_i) == c_null_char) exit\n" +
"\t<name>_dummy(<name>_i:<name>_i) = <name>_temp(<name>_i)\n" +
"end do\n" +
"do <name>_i = <name>_i, len(<name>_dummy)\n" +
"\t<name>_dummy(<name>_i:<name>_i) = ' '\n" +
"end do"
}, { #const char* Safe passing of an input string.
:regex => '^\s*(const\s+char|char\s+const)\s*\*\s*(?<name>\w+)\s*$',
:placeholders => %w[name],
:dummyName => '<name>_dummy',
:acceptAs => 'character(kind = c_char, len = *), intent(in) :: <name>_dummy',
:helperVars => "character(kind = c_char) :: <name>_temp(len(<name>_dummy) + 1)\ninteger :: <name>_i",
:precallStatements => "do <name>_i = 1, len(<name>_dummy)\n\t<name>_temp(<name>_i) = <name>_dummy(<name>_i:<name>_i)\nend do\n<name>_temp(len(<name>_dummy) + 1) = c_null_char",
:callExpression => '<name>_temp',
:passAs => 'character(kind = c_char) :: <name>_dummy(*)',
:postcallStatements => ''
}, { #char** Safe returning of an output string.
:regex => '^\s*char\s*\*\s*\*\s*(?<name>\w+)_optional\s*$',
:placeholders => %w[name],
:dummyName => '<name>',
:acceptAs => 'character(kind = c_char), pointer, optional, intent(inout) :: <name>(:)',
:helperVars => "type(c_ptr), target :: <name>_cptr\n" +
"type(c_ptr) :: <name>_handle\n" +
"integer :: <name>_shape(1)\n" +
"character(kind = c_char), pointer :: <name>_fptr(:)",
:precallStatements => "<name>_handle = c_null_ptr\n" +
"if(present(<name>)) <name>_handle = c_loc(<name>_cptr)",
:callExpression => '<name>_handle',
:passAs => 'type(c_ptr), value :: <name>',
:postcallStatements => "if(present(<name>)) then\n" +
"\tif(c_associated(<name>_cptr)) then\n" +
"\t\t<name>_shape(1) = int(lib_strlen(<name>_cptr))\n" +
"\t\tcall c_f_pointer(<name>_cptr, <name>_fptr, <name>_shape)\n" +
"\t\tallocate(<name>(<name>_shape(1)))\n" +
"\t\t<name> = <name>_fptr\n" +
"\t\tcall lib_free(<name>_cptr)\n" +
"\telse\n" +
"\t\t<name> => null()\n" +
"\tend if\n" +
"end if"
},
#Public and opaque types
{ #[const] <opaqueTypes>*
:regex => '^\s*(const\s+|)(?<type><opaqueTypes>)(\s+const|)\s*\*\s*(?<name>\w+)\s*$',
:placeholders => %w[name type],
:dummyName => '<name>_dummy',
:acceptAs => 'type(t_<type>), intent(in) :: <name>_dummy',
:helperVars => '',
:precallStatements => '',
:callExpression => '<name>_dummy%ptr',
:passAs => 'type(c_ptr), value :: <name>_dummy',
:postcallStatements => ''
}
]
$returnTypeTemplates = [
{ #void
:regex => '^\s*void\s*$',
:placeholders => %w[],
:isVoid => true
}, { #<integerTypes>
:regex => '^\s*(?<type><integerTypes>)\s*$',
:placeholders => %w[type],
:isVoid => false,
:returnAs => 'integer(c_<type>)',
:helperVars => '',
:precallStatements => '',
:receiveAs => 'integer(c_<type>)',
:assignVariable => $wrapperResultVarName,
:postcallStatements => ''
}, { #bool
:regex => '^\s*(?<type>bool)\s*$',
:placeholders => %w[type],
:isVoid => false,
:returnAs => 'logical(c_<type>)',
:helperVars => '',
:precallStatements => '',
:receiveAs => 'logical(c_<type>)',
:assignVariable => $wrapperResultVarName,
:postcallStatements => ''
}, { #<floatTypes>
:regex => '^\s*(?<type><floatTypes>)\s*$',
:placeholders => %w[type],
:isVoid => false,
:returnAs => 'real(c_<type>)',
:helperVars => '',
:precallStatements => '',
:receiveAs => 'real(c_<type>)',
:assignVariable => $wrapperResultVarName,
:postcallStatements => ''
}, { #char*
:regex => '^\s*char\s*\*\s*$',
:placeholders => %w[],
:isVoid => false,
:returnAs => 'character(kind = c_char), dimension(:), pointer',
:helperVars => "type(c_ptr) :: cString\n" +
"integer :: rv_shape(1)\n" +
"character(kind = c_char), dimension(:), pointer :: temp",
:precallStatements => '',
:receiveAs => 'type(c_ptr)',
:assignVariable => 'cString',
:postcallStatements => "if(c_associated(cString)) then\n" +
"\trv_shape(1) = int(lib_strlen(cString))\n" +
"\tcall c_f_pointer(cString, temp, rv_shape)\n" +
"\tallocate(#{$wrapperResultVarName}(rv_shape(1)))\n" +
"\t#{$wrapperResultVarName} = temp\n" +
"\tcall lib_free(cString)\n" +
"else\n" +
"\t#{$wrapperResultVarName} => null()\n" +
"end if"
}, { #const char*
:regex => '^\s*const\s+char\s*\*\s*$',
:placeholders => %w[],
:isVoid => false,
:returnAs => 'character(kind = c_char), dimension(:), pointer',
:helperVars => "type(c_ptr) :: ptr\ninteger :: rv_shape(1)",
:precallStatements => $wrapperResultVarName + ' => null()',
:receiveAs => 'type(c_ptr)',
:assignVariable => 'ptr',
:postcallStatements => "if(c_associated(ptr)) then\n" +
"\trv_shape(1) = int(lib_strlen(ptr))\n" +
"\tcall c_f_pointer(ptr, #{$wrapperResultVarName}, rv_shape)\n" +
"end if"
}, { #const int* This returns the naked pointer because we can't know the length of the returned array within the wrapper. The user has to call c_f_pointer() himself.
:regex => '^\s*const\s+(?<type><integerTypes>)\s*\*\s*$',
:placeholders => %w[type],
:isVoid => false,
:returnAs => 'type(c_ptr)',
:helperVars => '',
:precallStatements => '',
:receiveAs => 'type(c_ptr)',
:assignVariable => $wrapperResultVarName,
:postcallStatements => ''
}, { #const double* This returns the naked pointer because we can't know the length of the returned array within the wrapper. The user has to call c_f_pointer() himself.
:regex => '^\s*const\s+(?<type><floatTypes>)\s*\*\s*$',
:placeholders => %w[type],
:isVoid => false,
:returnAs => 'type(c_ptr)',
:helperVars => '',
:precallStatements => '',
:receiveAs => 'type(c_ptr)',
:assignVariable => $wrapperResultVarName,
:postcallStatements => ''
},
#Public and opaque types.
{ #<publicTypes>
:regex => '^\s*(?<type><publicTypes>)\s+$',
:placeholders => %w[type],
:isVoid => false,
:returnAs => 'type(t_<type>)',
:helperVars => '',
:precallStatements => '',
:receiveAs => 'type(t_<type>)',
:assignVariable => $wrapperResultVarName,
:postcallStatements => ''
}, { #<opaqueTypes>*
:regex => '^\s*(?<type><opaqueTypes>)\s*\*\s*$',
:placeholders => %w[type],
:isVoid => false,
:returnAs => 'type(t_<type>)',
:helperVars => '',
:precallStatements => '',
:receiveAs => 'type(c_ptr)',
:assignVariable => $wrapperResultVarName + '%ptr',
:postcallStatements => ''
}
]
$typeTemplates = [
{ #<integerTypes>
:regex => '^\s*(?<type><integerTypes>)\s+(?<name>\w+)\s*;$',
:placeholders => %w[name type],
:declareAs => "integer(c_<type>) :: <name>"
}, { #<floatTypes>
:regex => '^\s*(?<type><floatTypes>)\s+(?<name>\w+)\s*;$',
:placeholders => %w[name type],
:declareAs => "real(c_<type>) :: <name>"
}
]
####################################################################################################
# Verbatim Fortran Code ############################################################################
####################################################################################################
$verbatimDeclarations = '
public ctrim
public c_len
interface
integer(c_size_t) function lib_strlen(charPtr) bind(c, name = "strlen")
import c_size_t, c_ptr
type(c_ptr), value :: charPtr
end function lib_strlen
subroutine lib_free(ptr) bind(c, name = "free")
import c_ptr
type(c_ptr), value, intent(in) :: ptr
end subroutine lib_free
end interface
'
$verbatimDefinitions = "
subroutine ctrim(str)
character(kind = c_char, len = *), intent(inout) :: str
integer :: i
do i=1,len(str)
if (str(i:i) == c_null_char) then
str(i:len(str)) = ' '
exit
end if
end do
end subroutine ctrim
function c_len(s) result(i)
character(kind = c_char, len = *), intent(in) :: s
integer :: i
do i = 1, len(s)
if (s(i:i) == c_null_char) exit
end do
i = i - 1
end function
"
####################################################################################################
# Code to interpret the templates ##################################################################
####################################################################################################
$declarationLines = []
$definitionLines = []
$interfaceLines = []
$opaqueTypes = []
$publicTypes = []
def rubyVersionOk()
version = RUBY_VERSION.split(".")
if version[0].to_i > 1
return true
elsif version[0].to_i == 1
return version[1].to_i >= 9
else
return false
end
end
#This substitutes the placeholders <opaqueTypes> and <publicTypes> in the regexString prior to constructing a Regexp out of it.
def matchTemplate(regexString, matchString)
opaqueTypesString = '(' + $opaqueTypes.collect{ |type| type }.join('|') + ')'
regexString = regexString.gsub("<opaqueTypes>", opaqueTypesString)
publicTypesString = '(' + $publicTypes.collect{ |type| type }.join('|') + ')'
regexString = regexString.gsub('<publicTypes>', publicTypesString)
regexString = regexString.gsub('<integerTypes>', '\b(short|int|long|size_t|intmax_t|int_(least|fast)(8|16|32|64)_t|int(8|16|32|64)_t)\b')
regexString = regexString.gsub('<floatTypes>', '(float|double)')
return Regexp.new(regexString).match(matchString)
end
class TemplateInstanciation
def initialize(argumentString, template)
@template = template
@matchData = matchTemplate(template[:regex], argumentString)
@placeholders = []
template[:placeholders].each { |placeholder|
@placeholders.push({ :name => placeholder, :regex => Regexp.new("<#{placeholder}>") })
}
end
def expandTemplate(templateKey)
result = @template[templateKey]
#Replace all placeholders with their expansion.
@placeholders.each { |current|
result = result.gsub(current[:regex], @matchData[current[:name]])
}
return result
end
def nonEmptyKey?(templateKey)
result = @template[templateKey] != ''
return result
end
attr_reader :template
end
def formatLines(lineArray, indentation, string)
$stderr.puts("Formatting '" + string + "'") if $debug > 3
if string == "" && indentation == 0
lineArray.push("") #split() does not return anything if the string is empty, killing our empty lines
end
string.split("\n").each { |line|
lineArray.push("\t"*indentation + line)
}
tail = ''
if lineArray.length > 1
tail = lineArray[-2..-1].join("\n")
else
tail = lineArray[-1]
end
$stderr.puts("Tail '" + tail + "'") if $debug > 3
end
def haveTemplateKey(templates, templateKey)
result = false
templates.count{ |template|
result ||= template.nonEmptyKey?(templateKey)
break if result
}
return result
end
def dumpStatements(indentation, argumentArray, templateKey, outputArray)
argumentArray.each{ |argument|
formatLines(outputArray, indentation, argument.expandTemplate(templateKey))
}
end
def defineConstant(name, value)
if /^(\+|-|)\d+$/.match(value)
formatLines($declarationLines, 1, "integer(c_int), public, parameter :: #{name} = " + value)
else
$stderr.puts("Error: value '#{value}' of constant '#{name}' is not an integer literal")
end
end
def defineOpaqueType(name)
formatLines($declarationLines, 0, "")
formatLines($declarationLines, 1, "public :: t_#{name}")
formatLines($declarationLines, 1, "type :: t_#{name}")
formatLines($declarationLines, 2, "type(c_ptr) :: ptr")
formatLines($declarationLines, 1, "end type t_#{name}")
$opaqueTypes.push(name)
end
def findTemplate(string, templateArray)
templateArray.each do |template|
if matchTemplate(template[:regex], string)
return template
end
end
return nil
end
def definePublicType(name, body)
formatLines($declarationLines, 0, "")
formatLines($declarationLines, 1, "public t_#{name}")
formatLines($declarationLines, 1, "type, bind(c) :: t_#{name}")
body.gsub(/[^;]+;/) do |variableDeclaration|
if template = findTemplate(variableDeclaration, $typeTemplates)
variable = TemplateInstanciation.new(variableDeclaration, template)
formatLines($declarationLines, 2, variable.expandTemplate(:declareAs))
else
$stderr.puts("Error: Can't translate the declaration '" + variableDeclaration + "'")
end
end
formatLines($declarationLines, 1, 'end type t_' + name)
$publicTypes.push(name)
end
def collectImportConstants(importConstantsArray, typeString)
$stderr.puts('Considering \'' + typeString + "' for import\n") if $debug > 2
if importConstant = typeString[/\b[ct]_\w+\b/]
importConstantsArray.push(importConstant)
end
end
def collectArrayBoundImports(importConstantsArray, argPassString)
if array_bounds_match =
/(?<=\()\s*(?:[a-zA-Z_]\w*|:|\d+)\s*(?:,\s*(?:[a-zA-Z_]\w*|:|\d+)\s*?)*(?=\s*\)$)/.match(argPassString)
$stderr.puts('Found array bounds: \'' +
array_bounds_match.to_a.join('\', \'') + "'",
'for \'' + argPassString + "'") if $debug > 3
array_bounds_match = array_bounds_match[0]
array_bounds_match.lstrip!
array_bounds_match = array_bounds_match.split(/\s*,\s*/)
array_bounds_match.select! do |bound|
bound != ':' && bound !~ /^\d+$/
end
$stderr.puts('Possible import symbols in array bounds: \'' +
array_bounds_match.join('\', \'') + "'") if $debug > 3
importConstantsArray.push(*array_bounds_match)
end
end
#Collect the c_* and t_* constants/types from the arguments and the return type and build the corresponding `import` statement from them.
def importStatement(returnType, argumentArray)
importConstants = []
collectImportConstants(importConstants, returnType)
argumentArray.each { |arg|
argStr = arg.expandTemplate(:passAs)
collectArrayBoundImports(importConstants, argStr)
collectImportConstants(importConstants, argStr)
}
$stderr.puts('Returning \'' + importConstants.sort.uniq.join(', ') +
"' for import\n") if $debug > 2
return (importConstants.length != 0) ? ('import ' + importConstants.sort.uniq.join(', ')) : ''
end
def defineFunction(name, arguments, returnType)
#Find the relevant templates.
if returnTemplate = findTemplate(returnType, $returnTypeTemplates)
returnData = TemplateInstanciation.new(returnType, returnTemplate)
argArray = []
arguments.gsub(/[^,]+/) do |argument|
if template = findTemplate(argument, $argumentTemplates)
argArray.push(TemplateInstanciation.new(argument, template))
else
$stderr.puts("Error: type of argument '#{argument}' to function #{name}() is not supported")
return
end
end
else
$stderr.puts("Error: Can't translate return type '#{returnType}' of function #{name}()")
return
end
needArgPrologue = haveTemplateKey(argArray, :precallStatements)
needRetValPrologue = !returnTemplate[:isVoid] &&
returnData.nonEmptyKey?(:precallStatements)
needArgEpilogue = haveTemplateKey(argArray, :postcallStatements)
needRetValEpilogue = !returnTemplate[:isVoid] &&
returnData.nonEmptyKey?(:postcallStatements)
needRetValConversion = !returnTemplate[:isVoid] &&
returnTemplate[:returnAs] != returnTemplate[:receiveAs]
needArgConversion = false
argArray.each do |arg|
needArgConversion = (arg.template[:passAs] != arg.template[:acceptAs])
break if needArgConversion
end
needWrapper = needArgPrologue || needRetValPrologue ||
needArgEpilogue || needRetValEpilogue ||
needRetValConversion || needArgConversion
baseIndent = 0
formatLines($declarationLines, 1, 'public :: ' + name)
$stderr.puts(name + "\n" +
[ "\t"+'needArgPrologue => ' + needArgPrologue.to_s,
"\t"+'needRetValPrologue => ' + needRetValPrologue.to_s,
"\t"+'needArgEpilogue => ' + needArgEpilogue.to_s,
"\t"+'needRetValEpilogue => ' + needRetValEpilogue.to_s,
"\t"+'needRetValConversion => ' + needRetValConversion.to_s,
"\t"+'needArgConversion => ' + needArgConversion.to_s,
"\t"+'needWrapper => ' +
needWrapper.to_s].join("\n")) if $debug > 1
subprogramtype = returnTemplate[:isVoid] ? 'subroutine' : 'function'
dummyArguments = argArray.collect{ |arg|
arg.expandTemplate(:dummyName)
}.join(", ")
if needWrapper
#Generate the wrapper function.
line = subprogramtype + ' ' + name + '(' + dummyArguments + ')' +
(returnTemplate[:isVoid] ? '' : " result(#{$wrapperResultVarName})")
formatLines($definitionLines, 1, line)
if !returnTemplate[:isVoid]
formatLines($definitionLines, 2,
returnData.expandTemplate(:returnAs) + ' :: ' +
$wrapperResultVarName)
end
dumpStatements( 2, argArray, :acceptAs, $definitionLines)
dumpStatements( 2, argArray, :helperVars, $definitionLines)
if !returnTemplate[:isVoid]
formatLines($definitionLines, 2, returnData.expandTemplate(:helperVars))
end
formatLines($definitionLines, 2, 'interface')
line=subprogramtype + ' lib_' + name + '(' + dummyArguments + ') ' +
'bind(c, name = \'' + name + '\')' +
(returnTemplate[:isVoid] ? '' : ' result(c_result)')
formatLines($definitionLines, 3, line)
formatLines($definitionLines, 4,
importStatement(returnTemplate[:isVoid] ? '' :
returnData.expandTemplate(:receiveAs), argArray))
if !returnTemplate[:isVoid]
formatLines($definitionLines, 4,
returnData.expandTemplate(:receiveAs) + ' :: c_result')
end
dumpStatements( 4, argArray, :passAs, $definitionLines)
formatLines($definitionLines, 3, 'end ' + subprogramtype + ' lib_' + name)
formatLines($definitionLines, 2, 'end interface')
if needArgPrologue
dumpStatements( 2, argArray, :precallStatements, $definitionLines)
end
if !returnTemplate[:isVoid]
formatLines($definitionLines, 2,
returnData.expandTemplate(:precallStatements))
end
formatLines($definitionLines, 2,
(returnTemplate[:isVoid] ? 'call' :
(returnData.expandTemplate(:assignVariable) + ' =')) +
' lib_' + name + '(' + argArray.collect{ |arg|
arg.expandTemplate(:callExpression)
}.join(', ') + ')')
if (needArgEpilogue)
dumpStatements( 2, argArray, :postcallStatements, $definitionLines)
end
if needRetValEpilogue
formatLines($definitionLines, 2,
returnData.expandTemplate(:postcallStatements))
end
formatLines($definitionLines, 1, 'end ' + subprogramtype + ' ' + name)
formatLines($definitionLines, 0, '')
else
#Generate interface block only
baseIndent = 1
line = subprogramtype + ' ' + name + '(' + dummyArguments +
') bind(c, name = \'' + name + '\')' +
(returnTemplate[:isVoid] ? '' : " result(#{$wrapperResultVarName})")
formatLines($interfaceLines, baseIndent + 1, line)
line = importStatement(returnTemplate[:isVoid] ? '' :
returnData.expandTemplate(:returnAs),
argArray)
$stderr.puts('Emitting \'' + line + "'") if $debug > 2
formatLines($interfaceLines, baseIndent + 2, line)
dumpStatements(baseIndent + 2, argArray, :passAs, $interfaceLines)
if !returnTemplate[:isVoid]
formatLines($interfaceLines, baseIndent + 2,
returnData.expandTemplate(:returnAs) + ' :: ' +
$wrapperResultVarName)
end
formatLines($interfaceLines, baseIndent + 1, 'end ' + subprogramtype + ' ' + name)
formatLines($interfaceLines, 0, '')
end
end
#Scan the given header and collect the interface information in the global variables.
def scanHeader(headerPath)
#Scan the given header.
headerFile = File.open(headerPath, 'r')
commentTerm = %r{\*/}
commentInit = %r{/[*/]}
while line = headerFile.gets
line.chomp!
line.gsub!(/SizeType/,'int')
line.gsub!(/DateType/,'int')
commentBeginLineNo = headerFile.lineno
while foundComment = commentInit.match(line)
commentBegin = foundComment.begin(0)
typeChar = line[commentBegin+1]
if typeChar == "/"
line = line[0,commentBegin]
line.rstrip!
foundComment = false
elsif typeChar == "*"
commentSubStr=line[commentBegin..-1]
if commentTerm.match(commentSubStr)
newLine = line.gsub(%r{/\*.*?\*/},'')
line = newLine.rstrip
else
while newLine = headerFile.gets and not foundCommentEnd = commentTerm.match(newLine)
end
if not newLine
$stderr.puts("Unterminated comment started at line ",
commentBeginLineNo, "'", line, "'")
exit(1)
end
newLine.chomp!
line = line[0,commentBegin] +
newLine[foundCommentEnd.begin(0)+2..-1]
end
end
end
if /^\s*$/.match(line)
#Empty lines are ignored.
#Preprocessor stuff
elsif matchedLine = /^\s*#\s*define\s+(?<symbol>\w+)\s+(?<value>.+)$/.match(line)
defineConstant(matchedLine['symbol'], matchedLine['value'])
elsif /^\s*#/.match(line)
#All other preprocessor directives are ignored.
#User defined types
elsif matchedLine = /^\s*typedef\s+struct\s+(?<typeName>\w+)\s+\k<typeName>\s*;\s*$/.match(line)
defineOpaqueType(matchedLine['typeName'])
elsif matchedLine = /^\s*typedef\s+struct\s+(?<typeName>\w+)\s*{(?<body>.*)}\s*\k<typeName>\s*;\s*$/.match(line)
definePublicType(matchedLine['typeName'], matchedLine['body'])
#Function declarations
elsif matchedLine = /^\s*(?<returnType>[^()]+)\b(?<functionName>\w+)\s*\((?<arguments>.*)\)\s*;\s*$/.match(line)
defineFunction(matchedLine['functionName'], matchedLine['arguments'], matchedLine['returnType'])
else
STDERR.puts("Warning: Unrecognized line '#{line}'")
end
end
end
#Prints the line if it does not consist only of indentation, adding continuation lines as necessary.
def fortranLine(file, line)
unless /^\t+$/.match(line) #Intentionally empty lines don't contain indentation, so we preserve totally empty lines while throwing away the ones with leading tabs.
# replace tabs with spaces first
spacesPerTab = 2
mline = line.gsub("\t", ' '*spacesPerTab)
charsPerLine=79
indentation = /^ */.match(mline)[0]
if not %r{^ *!}.match(mline)
while mline.length > charsPerLine
# last position of space preceding line break
tspos = mline[0..charsPerLine].rindex(' ') || charsPerLine
file.puts(mline[0...tspos] + "&")
mline = indentation + "&" + mline[tspos...mline.length]
end
end
file.puts(mline)
end
end
#Output the interface information in the global variables to a fortran file.
def writeFortranModule(scriptPath, headerPath, modulePath, moduleName)
file = File.new(modulePath, "w")
fortranLine(file, "! >>> Warning: This is a generated file. If you modify it, you get what you deserve. <<<")
fortranLine(file, "!")
fortranLine(file, "! Generated by \"#{scriptPath}\" from input file \"#{headerPath}\".")
fortranLine(file, "");
fortranLine(file, 'module ' + moduleName)
fortranLine(file, "\tuse iso_c_binding")
fortranLine(file, "\timplicit none")
fortranLine(file, "\tprivate")
$verbatimDeclarations.each_line do |line|
fortranLine(file, line)
end
fortranLine(file, '')
$declarationLines.each do |line|
fortranLine(file, line)
end
fortranLine(file, '')
unless $interfaceLines.empty?
fortranLine(file, "\tinterface")
$interfaceLines.each do |line|
fortranLine(file, line)
end
fortranLine(file, "\tend interface")
fortranLine(file, '')
end
fortranLine(file, "contains")
$verbatimDefinitions.each_line do |line|
fortranLine(file, line)
end
fortranLine(file, '')
$definitionLines.each do |line|
fortranLine(file, line)
end
fortranLine(file, 'end module ' + moduleName)
end
def main
printUsage = false
ARGV.each { |argument|
if argument == "-h" || argument == "--help"
printUsage = true
end
}
unless printUsage
case ARGV.length
when 0
$stderr.puts("Error: no input file given")
printUsage = true
when 1
$stderr.puts("Error: no output file given")
printUsage = true
when 2
moduleName = /(?<basename>[^.\/]+)\.[^\/]+/.match(ARGV[1])['basename']
when 3
moduleName = ARGV[2]
else
$stderr.puts("Error: too many arguments")
printUsage = true
end
end
unless printUsage
headerPath = ARGV[0]
outputPath = ARGV[1]
scanHeader(headerPath)
writeFortranModule($0, headerPath, outputPath, moduleName)
else
puts("Usage:")
puts($0 + ' cHeader outputPath [ moduleName ]')
puts($0 + ' ( -h | --help )')
puts("")
puts("\tcHeader: input C header file")
puts("\toutputPath: output fortran file name")
puts("\tmoduleName: name of the resulting fortran module, defaults to the basename of outputPath")
end
end
if rubyVersionOk()
main()
else
$stderr.puts("Error: Ruby version #{RUBY_VERSION} is too old (version 1.9 is required). Skipping fortran interface generation.")
end
#
# Local Variables:
# mode: ruby
# tab-always-indent: nil
# tab-width: 2
# ruby-indent-tabs-mode: t
# indent-tabs-mode: t
# End:
#
|