1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined USE_MPI && defined HAVE_PPM_CORE
#include <ppm/ppm_uniform_partition.h>
#include <core/ppm_combinatorics.h>
#endif
#include "cdi.h"
#include "dmemory.h"
#include "error.h"
#include "simple_model_helper.h"
void
var_scale(int datatype, double *mscale, double *mrscale)
{
int mant_bits;
switch (datatype)
{
case CDI_DATATYPE_PACK8: mant_bits = 7; break;
case CDI_DATATYPE_PACK16: mant_bits = 15; break;
case CDI_DATATYPE_PACK24: mant_bits = 23; break;
case CDI_DATATYPE_FLT32: mant_bits = 24; break;
case CDI_DATATYPE_FLT64: mant_bits = 53; break;
case CDI_DATATYPE_INT8:
case CDI_DATATYPE_INT16:
case CDI_DATATYPE_INT32:
default: fprintf(stderr, "Unexpected or unusable content format: %d\n", datatype); exit(EXIT_FAILURE);
}
*mscale = (double) (INT64_C(1) << mant_bits);
*mrscale = 1.0 / *mscale;
}
/**
* Compute UNIX epoch-based time_t from CDI's decimal encoding of date.
*/
time_t
cditime2time_t(int date, int timeofday)
{
struct tm t_s;
time_t t;
t_s.tm_year = date / 10000;
t_s.tm_mon = (date - t_s.tm_year * 10000) / 100;
t_s.tm_mday = date % 100;
t_s.tm_year -= 1900;
t_s.tm_hour = timeofday / 10000;
t_s.tm_min = (timeofday % 10000) / 100;
t_s.tm_sec = timeofday % 100;
t_s.tm_isdst = 0;
t = mktime(&t_s);
return t;
}
/**
* Build decimal encoding of date from UNIX epoch-based time_t.
*/
void
time_t2cditime(time_t t, int *date, int *timeofday)
{
struct tm *t_s;
t_s = localtime(&t);
*date = (t_s->tm_year + 1900) * 10000 + t_s->tm_mon * 100 + t_s->tm_mday;
*timeofday = t_s->tm_hour * 10000 + t_s->tm_min * 100 + t_s->tm_sec;
}
void
composeFilename(char **buf, const char *fname_prefix, int tfID, const char *suffix)
{
size_t fnSize = strlen(fname_prefix) + (tfID >= 0 ? 1 + sizeof(int) * 3 : 0) + 1 + strlen(suffix) + 1;
char *filename = (char *) Realloc(*buf, fnSize);
int plen = tfID >= 0 ? snprintf(filename, fnSize, "%s_%d.%s", fname_prefix, tfID, suffix)
: snprintf(filename, fnSize, "%s.%s", fname_prefix, suffix);
if ((size_t) plen >= fnSize)
{
fprintf(stderr,
"unexpected error: printing to string of size %zu"
" results in %d chars to write\n",
fnSize, plen);
abort();
}
filename[fnSize - 1] = 0;
*buf = filename;
}
int
composeStream(char **buf, const char *fname_prefix, int tfID, const char *suffix, int filetype)
{
char *temp = buf ? *buf : NULL;
composeFilename(&temp, fname_prefix, tfID, suffix);
int streamID = streamOpenWrite(temp, filetype);
if (streamID < 0)
{
fprintf(stderr, "Failed to open stream: %s\n", cdiStringError(streamID));
abort();
}
if (!buf)
free(temp);
else
*buf = temp;
return streamID;
}
int
createGlobalLatLonGrid(int nlon, int nlat)
{
int gridID = gridCreate(GRID_LONLAT, nlon * nlat);
gridDefXsize(gridID, nlon);
gridDefYsize(gridID, nlat);
size_t maxAxisSize = (size_t) (nlon > nlat ? nlon : nlat);
double *restrict coords = (double *) Malloc(maxAxisSize * sizeof(coords[0]));
{
double step = 360.0 / (double) nlon, ofs = step * 0.5;
for (size_t i = 0; i < (size_t) nlon; ++i) coords[i] = (double) i * step + ofs;
gridDefXvals(gridID, coords);
}
{
double step = 180.0 / (double) nlat, ofs = step * 0.5;
for (size_t i = 0; i < (size_t) nlat; ++i) coords[i] = (double) i * step - 90.0 + ofs;
gridDefYvals(gridID, coords);
}
Free(coords);
return gridID;
}
int
createLocalCurvilinearGrid(int sizex, int sizey)
{
size_t gridsize = (size_t) sizex * (size_t) sizey;
int gridID = gridCreate(GRID_CURVILINEAR, (int) gridsize);
gridDefXsize(gridID, sizex);
gridDefYsize(gridID, sizey);
{
/* anti-clockwise coordinates around Amazonia */
static const struct cart_coord region[4] = { { .lon = DEG2RAD(-85.0), .lat = DEG2RAD(-25.0) },
{ .lon = DEG2RAD(-44.0), .lat = DEG2RAD(-18.0) },
{ .lon = DEG2RAD(-50.0), .lat = DEG2RAD(7.0) },
{ .lon = DEG2RAD(-80.0), .lat = DEG2RAD(10.0) } };
double(*gridCoords)[sizey][sizex] = (double(*)[sizey][sizex]) Malloc(sizeof(*gridCoords) * gridsize * 2);
{
const size_t xyRange[2][2] = { { 0, 0 }, { (size_t) sizex, (size_t) sizey } };
computeCurvilinearChunk((double *) gridCoords, region, (size_t) sizex, (size_t) sizey, xyRange);
}
gridDefXvals(gridID, (double *) (gridCoords[1]));
gridDefYvals(gridID, (double *) (gridCoords[0]));
Free(gridCoords);
}
return gridID;
}
static inline double
cartDistance(struct cart_coord p1, struct cart_coord p2)
{
double d_lat = sin((p1.lat - p2.lat) / 2.0), d_lon = sin((p1.lon - p2.lon) / 2.0),
d = 2.0 * asin(sqrt(d_lat * d_lat + cos(p1.lat) * cos(p2.lat) * (d_lon * d_lon)));
return d;
}
static inline struct cart_coord
intermediateCoord(struct cart_coord p1, struct cart_coord p2, double f)
{
double d = cartDistance(p1, p2), sine_of_d = sin(d), A = sin((1 - f) * d) / sine_of_d, B = sin(f * d) / sine_of_d,
x = A * cos(p1.lat) * cos(p1.lon) + B * cos(p2.lat) * cos(p2.lon),
y = A * cos(p1.lat) * sin(p1.lon) + B * cos(p2.lat) * sin(p2.lon), z = A * sin(p1.lat) + B * sin(p2.lat);
struct cart_coord ic = { .lon = atan2(y, x), .lat = atan2(z, sqrt(x * x + y * y)) };
return ic;
}
void
computeCurvilinearChunk(double *coords_, const struct cart_coord a[4], size_t sizex, size_t sizey, const size_t xyRange[2][2])
{
size_t startx = xyRange[0][0], starty = xyRange[0][1], chunkSizeX = xyRange[1][0], chunkSizeY = xyRange[1][1],
endx = startx + chunkSizeX, endy = starty + chunkSizeY;
assert(startx <= endx && endx <= sizex && starty <= endy && endy <= sizey);
#ifdef __cplusplus
auto coords = (double(*)[chunkSizeY][chunkSizeX]) coords_;
#else
double(*coords)[chunkSizeY][chunkSizeX] = (double(*)[sizey][sizex]) coords_;
#endif
for (size_t j = starty; j < endy; ++j)
{
double g = (double) j / (double) (sizey - 1);
/* compute start/end coordinates of great circle in x direction */
struct cart_coord gc_left = intermediateCoord(a[0], a[3], g), gc_right = intermediateCoord(a[1], a[2], g);
for (size_t i = startx; i < endx; ++i)
{
double f = (double) i / (double) (sizex - 1);
struct cart_coord pij = intermediateCoord(gc_left, gc_right, f);
coords[0][j - starty][i - startx] = RAD2DEG(pij.lat);
coords[1][j - starty][i - startx] = RAD2DEG(pij.lon);
}
}
}
#if defined USE_MPI && !defined HAVE_PPM_CORE
static int32_t uniform_partition_start(struct PPM_extent set_interval, int nparts, int part_idx);
struct PPM_extent
PPM_uniform_partition(struct PPM_extent set_interval, int nparts, int part_idx)
{
struct PPM_extent range;
range.first = uniform_partition_start(set_interval, nparts, part_idx);
range.size = uniform_partition_start(set_interval, nparts, part_idx + 1) - range.first;
return range;
}
static int32_t
uniform_partition_start(struct PPM_extent set_interval, int nparts, int part_idx)
{
int32_t part_offset = ((int64_t) set_interval.size * (int64_t) part_idx) / (int64_t) nparts;
int32_t start = set_interval.first + part_offset;
return start;
}
int
PPM_prime_factorization_32(uint32_t n, uint32_t **factors)
{
if (n <= 1) return 0;
uint32_t *restrict pfactors = (uint32_t *) Realloc(*factors, 32 * sizeof(pfactors[0]));
size_t numFactors = 0;
uint32_t unfactored = n;
while (!(unfactored & 1))
{
pfactors[numFactors] = 2;
++numFactors;
unfactored >>= 1;
}
uint32_t divisor = 3;
while (unfactored > 1)
{
while (unfactored % divisor == 0)
{
unfactored /= divisor;
pfactors[numFactors] = divisor;
++numFactors;
}
divisor += 1;
}
*factors = pfactors;
return numFactors;
}
#endif
#if !defined USE_MPI || !defined HAVE_PPM_CORE
static char repeatable_rand_state[31 * sizeof(long)];
long
cdi_repeatable_random(void)
{
char *caller_rand_state = setstate(repeatable_rand_state);
long retval = random();
setstate(caller_rand_state);
return retval;
}
void
cdi_seed_repeatable_random(unsigned seed)
{
char *caller_rand_state = initstate(seed, repeatable_rand_state, sizeof(repeatable_rand_state));
setstate(caller_rand_state);
}
#endif
/*
* Local Variables:
* c-file-style: "Java"
* c-basic-offset: 2
* indent-tabs-mode: nil
* show-trailing-whitespace: t
* require-trailing-newline: t
* End:
*/
|