1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
|
/*
* Copyright: GNU Public License 2 applies
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* cdparanoia (C) 2008 Monty <monty@xiph.org>
*
*/
/* we can ask most drives what their various caches' sizes are, but no
drive will tell if it caches redbook data. None should, many do,
and there's no way in (eg) MMC/ATAPI to tell a cdrom drive not to
cache when accessing audio. SCSI drives have a FUA facility, but
it's not clear how many ignore it. MMC does specify some cache
side effect as part of SET READ AHEAD, but it's not clear we can
rely on them. For that reason, we need to empirically determine
cache size and strategy used for reads. */
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "interface/cdda_interface.h"
#include "paranoia/cdda_paranoia.h"
#include "version.h"
/* not strictly just seeks, but also recapture and read resume when
reading/readahead is suspended and idling */
#define MIN_SEEK_MS 6
#define reportC(...) {if(progress){fprintf(progress, __VA_ARGS__);} \
if(log){fprintf(log, __VA_ARGS__);}}
#define printC(...) {if(progress){fprintf(progress, __VA_ARGS__);}}
#define logC(...) {if(log){fprintf(log, __VA_ARGS__);}}
static int time_drive(cdrom_drive *d, FILE *progress, FILE *log, int lba, int len, int initial_seek){
int i,x;
int latency=0;
double sum=0;
double sumsq=0;
int sofar;
logC("\n");
for(i=0,sofar=0;sofar<len;i++){
int toread = (i==0 && initial_seek?1:len-sofar);
int ret;
/* first read should also trigger a short seek; one sector so seek duration dominates */
if((ret=cdda_read_timed(d,NULL,lba+sofar,toread,&x))<=0){
/* media error! grr! retry elsewhere */
if(ret==-404)return -404;
return -1;
}
if(x>9999)x=9999;
if(x<0)x=0;
logC("%d:%d:%d ",lba+sofar,ret,x);
sofar+=ret;
if(i || !initial_seek){
sum+=x;
sumsq+= x*x /(float)ret;
}else
latency=x;
}
/* we count even the upper outliers because the drive is almost
certainly reading ahead and that will work itself out as we keep
reading to catch up. Besides-- the tests would rather see too
slow a timing than too fast; the timing data is used as an
optimization when sleeping. */
{
double mean = sum/(float)(len-1);
double stddev = sqrt( (sumsq/(float)(len-1) - mean*mean));
if(initial_seek){
printC("%4dms seek, %.2fms/sec read [%.1fx]",latency,mean,1000./75./mean);
logC("\n\tInitial seek latency (%d sectors): %dms",len,latency);
}
logC("\n\tAverage read latency: %.2fms/sector (raw speed: %.1fx)",mean,1000./75./mean);
logC("\n\tRead latency standard deviation: %.2fms/sector",stddev);
return sum;
}
}
static float retime_drive(cdrom_drive *d, FILE *progress, FILE *log, int lba, int readahead, float oldmean){
int sectors = 2000;
int total;
float newmean;
if(sectors*oldmean > 5000) sectors=5000/oldmean;
readahead*=10;
readahead/=9;
if(readahead>sectors)sectors=readahead;
printC("\bo");
logC("\n\tRetiming drive... ");
total = time_drive(d,NULL,log,lba,sectors,1);
newmean = total/(float)sectors;
logC("\n\tOld mean=%.2fms/sec, New mean=%.2fms/sec\n",oldmean,newmean);
printC("\b");
if(newmean>oldmean)return newmean;
return oldmean;
}
int analyze_cache(cdrom_drive *d, FILE *progress, FILE *log, int speed){
/* Some assumptions about timing:
We can't perform cache determination timing based on looking at
average transfer times; on slow setups, the speed of a drive
reading sectors via PIO will not be reliably distinguishable from
the same drive returning data from the cache via pio. We need
something even more noticable and reliable: the seek time. It is
unlikely we'd ever see a seek latency of under ~10ms given the
synchronization requirements of a CD and the maximum possible
rotational velocity. A cache hit would always be faster, even
with PIO.
Further complicating things, we have to watch the data collection
carefully as we're not always going to be on an unloaded system,
and we even have to guard against other apps accessing the drive
(something that should never happen on purpose, but could happen
by accident). As we know in our testing when seeks should never
occur, a sudden seek-sized latency popping up in the middle of a
collection is an indication that collection is possibly invalid.
A second cause of 'spurious latency' would be media damage; if
we're consistently hitting latency on the same sector during
initial collection, may need to move past it. */
int i,j,ret=0,x;
int firstsector=-1;
int lastsector=-1;
int firsttest=-1;
int lasttest=-1;
int offset;
int warn=0;
int current=1000;
int hi=15000;
int cachesize=0;
int readahead=0;
int rollbehind=0;
int cachegran=0;
float mspersector=0;
if(speed<=0)speed=-1;
reportC("\n=================== Checking drive cache/timing behavior ===================\n");
d->error_retry=0;
/* verify the lib and cache analysis match */
if(strcmp(VERSIONNUM,paranoia_version())){
reportC("\nWARNING: cdparanoia application (and thus the cache tests) does not match the"
"\ninstalled (or in use) libcdda_paranoia.so library. The final verdict of this"
"\ntesting may or may not be accurate for the actual version of the paranoia"
"library. Continuing anyway...\n\n");
}
/* find the longest stretch of available audio data */
for(i=0;i<d->tracks;i++){
if(cdda_track_audiop(d,i+1)==1){
if(firsttest == -1)
firsttest=cdda_track_firstsector(d,i+1);
lasttest=cdda_track_lastsector(d,i+1);
if(lasttest-firsttest > lastsector-firstsector){
firstsector=firsttest;
lastsector=lasttest;
}
}else{
firsttest=-1;
lasttest=-1;
}
}
if(firstsector==-1){
reportC("\n\tNo audio on disc; Cannot determine timing behavior...");
return -1;
}
/* Dump some initial timing data to give a little context for human
eyes. Take readings ten minutes apart (45000 sectors) and at end of disk. */
{
int best=0;
int bestcount=0;
int iterating=0;
offset = lastsector-firstsector-current-1;
reportC("\nSeek/read timing:\n");
while(offset>=firstsector){
int m = offset/4500;
int s = (offset-m*4500)/75;
int f = offset-m*4500-s*75;
int sofar;
if(iterating){
reportC("\n");
}else{
printC("\r");
logC("\n");
}
reportC("\t[%02d:%02d.%02d]: ",m,s,f);
/* initial seek to put at at a small offset past end of upcoming reads */
if((ret=cdda_read(d,NULL,offset+current+1,1))<0){
/* media error! grr! retry elsewhere */
if(ret==-404)return -1;
reportC("\n\tWARNING: media error during read; continuing at next offset...");
offset = (offset-firstsector+44999)/45000*45000+firstsector;
offset-=45000;
continue;
}
sofar=time_drive(d,progress, log, offset, current, 1);
if(offset==firstsector)mspersector = sofar/(float)current;
if(sofar==-404)
return -1;
else if(sofar<0){
reportC("\n\tWARNING: media error during read; continuing at next offset...");
offset = (offset-firstsector+44999)/45000*45000+firstsector;
offset-=45000;
continue;
}else{
if(!iterating){
if(best==0 || sofar*1.01<best){
best= sofar;
bestcount=0;
}else{
bestcount+=sofar;
if(bestcount>sofar && bestcount>4000)
iterating=1;
}
}
}
if(iterating){
offset = (offset-firstsector+44999)/45000*45000+firstsector;
offset-=45000;
printC(" ");
}else{
offset--;
printC(" spinning up... ");
}
}
}
reportC("\n\nAnalyzing cache behavior...\n");
/* search on cache size; cache hits are fast, seeks are not, so a
linear search through cache hits up to a miss are faster than a
bisection */
{
int under=1;
int onex=0;
current=0;
offset = firstsector+10;
while(current <= hi && under){
int i,j;
under=0;
current++;
if(onex){
if(speed==-1){
logC("\tAttempting to reset read speed to full... ");
}else{
logC("\tAttempting to reset read speed to %dx... ",speed);
}
if(cdda_speed_set(d,speed)){
logC("failed.\n");
}else{
logC("drive said OK\n");
}
onex=0;
}
printC("\r");
reportC("\tFast search for approximate cache size... %d sectors ",current-1);
logC("\n");
for(i=0;i<25 && !under;i++){
for(j=0;;j++){
int ret1=0,ret2=0;
if(i>=15){
int sofar=0;
if(i==15){
printC("\r");
reportC("\tSlow verify for approximate cache size... %d sectors",current-1);
logC("\n");
logC("\tAttempting to reduce read speed to 1x... ");
if(cdda_speed_set(d,1)){
logC("failed.\n");
}else{
logC("drive said OK\n");
}
onex=1;
}
printC(".");
logC("\t\t>>> ");
while(sofar<current){
ret1 = cdda_read_timed(d,NULL,offset+sofar,current-sofar,&x);
logC("slow_read=%d:%d:%d ",offset+sofar,ret1,x);
if(ret1<=0)break;
sofar+=ret1;
}
}else{
ret1 = cdda_read_timed(d,NULL,offset+current-1,1,&x);
logC("\t\t>>> fast_read=%d:%d:%d ",offset+current-1,ret1,x);
/* Some drives are 'easily distracted' when readahead is
running ahead of the read cursor, causing accesses of
the earliest sectors in the cache to show bursty
latency. If there's no seek here after a borderline
long read of the earliest sector in the cache, then the
cache must not have been dumped yet. */
if(ret==1 && i && x<MIN_SEEK_MS){
under=1;
logC("\n");
break;
}
}
ret2 = cdda_read_timed(d,NULL,offset,1,&x);
logC("seek_read=%d:%d:%d\n",offset,ret2,x);
if(ret1<=0 || ret2<=0){
offset+=current+100;
if(j==10 || offset+current>lastsector){
reportC("\n\tToo many read errors while performing drive cache checks;"
"\n\t aborting test.\n\n");
return(-1);
}
reportC("\n\tRead error while performing drive cache checks;"
"\n\t choosing new offset and trying again.\n");
}else{
if(x==-1){
reportC("\n\tTiming error while performing drive cache checks; aborting test.\n");
return(-1);
}else{
if(x<MIN_SEEK_MS){
under=1;
}
break;
}
}
}
}
}
}
cachesize=current-1;
printC("\r");
if(cachesize==hi){
reportC("\tWARNING: Cannot determine drive cache size or behavior! \n");
return 1;
}else if(cachesize){
reportC("\tApproximate random access cache size: %d sector(s) \n",cachesize);
}else{
reportC("\tDrive does not cache nonlinear access \n");
return 0;
}
/* does the readahead cache exceed the maximum Paranoia currently expects? */
{
cdrom_paranoia *p=paranoia_init(d);
if(cachesize > paranoia_cachemodel_size(p,-1)){
reportC("\nWARNING: This drive appears to be caching more sectors of\n"
" readahead than Paranoia can currently handle!\n");
warn=1;
}
paranoia_free(p);
}
if(speed==-1){
logC("\tAttempting to reset read speed to full... ");
}else{
logC("\tAttempting to reset read speed to %d... ",speed);
}
if(cdda_speed_set(d,speed)){
logC("failed.\n");
}else{
logC("drive said OK\n");
}
/* This is similar to the Fast search above, but just in case the
cache is being tracked as multiple areas that are treated
differently if non-contiguous.... */
{
int seekoff = cachesize*3;
int under=0;
reportC("\tVerifying that cache is contiguous...");
for(i=0;i<20 && !under;i++){
printC(".");
for(j=0;;j++){
int ret1,ret2;
if(offset+seekoff>lastsector){
reportC("\n\tOut of readable space on CDROM while performing drive checks;"
"\n\t aborting test.\n\n");
return(-1);
}
ret1 = cdda_read_timed(d,NULL,offset+seekoff,1,&x);
logC("\t\t>>> %d:%d:%d ",offset+seekoff,ret1,x);
ret2 = cdda_read_timed(d,NULL,offset,1,&x);
logC("seek_read:%d:%d:%d\n",offset,ret2,x);
if(ret1<=0 || ret2<=0){
offset+=cachesize+100;
if(j==10){
reportC("\n\tToo many read errors while performing drive cache checks;"
"\n\t aborting test.\n\n");
return(-1);
}
reportC("\n\tRead error while performing drive cache checks;"
"\n\t choosing new offset and trying again.\n");
}else{
if(x==-1){
reportC("\n\tTiming error while performing drive cache checks; aborting test.\n");
return(-1);
}else{
if(x<MIN_SEEK_MS)under=1;
break;
}
}
}
}
printC("\r");
if(under){
reportC("\nWARNING: Drive cache does not appear to be contiguous!\n");
warn=1;
}else{
reportC("\tDrive cache tests as contiguous \n");
}
}
/* The readahead cache size ascertained above is likely qualified by
background 'rollahead'; that is, the drive's readahead process is
often working ahead of our actual linear reads, and if reads stop
or are interrupted, readahead continues and overflows the cache.
It is also the case that the cache size we determined above is
slightly too low because readahead is probably always working
ahead of reads.
Determine the rollahead size a few ways (which may disagree:
1) Read number of sectors equal to cache size; pause; read backward until seek
2) Read sectors equal to cache-rollahead; verify reading back to beginning does not seek
3) Read sectors equal to cache; pause; read ahead until seek delay
*/
{
int lower=0;
int gran=64;
int it=3;
int tests=0;
int under=1;
readahead=0;
while(gran>1 || under){
tests++;
if(tests>8 && gran<64){
gran<<=3;
tests=0;
it=3;
}
if(gran && !under){
gran>>=3;
tests=0;
if(gran==1)it=10;
}
under=0;
readahead=lower+gran;
printC("\r");
logC("\n");
reportC("\tTesting background readahead past read cursor... %d",readahead);
printC(" \b\b\b\b\b\b\b\b\b\b\b");
for(i=0;i<it;i++){
int sofar=0,ret;
logC("\n\t\t%d >>> ",i);
while(sofar<cachesize){
ret = cdda_read_timed(d,NULL,offset+sofar,cachesize-sofar,&x);
if(ret<=0)goto error;
logC("%d:%d:%d ",offset+sofar,ret,x);
/* some drives can lose sync and perform an internal resync,
which can also cause readahead to restart. If we see
seek-like delays during the initial cahe load, retry the
preload */
sofar+=ret;
}
printC(".");
/* what we'd predict is needed to let the readahead process work. */
{
int usec=mspersector*(readahead)*(6+i)*200;
int max= 13000*2*readahead; /* corresponds to .5x */
if(usec>max)usec=max;
logC("sleep=%dus ",usec);
usleep(usec);
}
/* seek to offset+cachesize+readahead */
ret = cdda_read_timed(d,NULL,offset+cachesize+readahead-1,1,&x);
if(ret<=0)break;
logC("seek=%d:%d:%d",offset+cachesize+readahead-1,ret,x);
if(x<MIN_SEEK_MS){
under=1;
break;
}else if(i%3==1){
/* retime the drive just to be conservative */
mspersector=retime_drive(d, progress, log, offset, readahead, mspersector);
}
}
if(under)
lower=readahead;
}
readahead=lower;
}
logC("\n");
printC("\r");
if(readahead==0){
reportC("\tDrive does not read ahead past read cursor (very strange) \n");
}else{
reportC("\tDrive readahead past read cursor: %d sector(s) \n",readahead);
}
reportC("\tTesting cache tail cursor...");
while(1){
rollbehind=cachesize;
for(i=0;i<10 && rollbehind;){
int sofar=0,ret=0,retry=0;
logC("\n\t\t>>> ");
printC(".");
while(sofar<cachesize){
ret = cdda_read_timed(d,NULL,offset+sofar,cachesize-sofar,&x);
if(ret<=0)goto error;
logC("%d:%d:%d ",offset+sofar,ret,x);
sofar+=ret;
}
/* Pause what we'd predict is needed to let the readahead process work. */
{
int usec=mspersector*readahead*1500;
logC("\n\t\tsleeping %d microseconds",usec);
usleep(usec);
}
/* read backwards until we seek */
logC("\n\t\t<<< ");
sofar=rollbehind;
while(sofar>0){
sofar--;
ret = cdda_read_timed(d,NULL,offset+sofar,1,&x);
if(ret<=0)break;
logC("%d:%d:%d ",sofar,ret,x);
if(x>=MIN_SEEK_MS){
if(rollbehind != sofar+1){
rollbehind=sofar+1;
i=0;
}else{
i++;
}
break;
}
if(sofar==0)rollbehind=0;
}
error:
if(ret<=0){
offset+=cachesize;
retry++;
if(retry>10 || offset+cachesize>lastsector){
reportC("\n\tToo many read errors while performing drive cache checks;"
"\n\t aborting test.\n\n");
return(-1);
}
reportC("\n\tRead error while performing drive cache checks;"
"\n\t choosing new offset and trying again.\n");
continue;
}
}
/* verify that the drive timing didn't suddenly change */
{
float newms=retime_drive(d, progress, log, offset, readahead, mspersector);
if(newms > mspersector*1.2){
mspersector=newms;
printC("\r");
reportC("\tDrive timing changed during test; retrying...");
continue;
}
}
break;
}
logC("\n");
printC("\r");
if(rollbehind==0){
reportC("\tCache tail cursor tied to read cursor \n");
}else{
reportC("\tCache tail rollbehind: %d sector(s) \n",rollbehind);
}
reportC("\tTesting granularity of cache tail");
while(1){
cachegran=cachesize+1;
for(i=0;i<10 && cachegran;){
int sofar=0,ret=0,retry=0;
logC("\n\t\t>>> ");
printC(".");
while(sofar<cachesize+1){
ret = cdda_read_timed(d,NULL,offset+sofar,cachesize-sofar+1,&x);
if(ret<=0)goto error2;
logC("%d:%d:%d ",offset+sofar,ret,x);
sofar+=ret;
}
/* Pause what we'd predict is needed to let the readahead process work. */
{
int usec=mspersector*readahead*1500;
logC("\n\t\tsleeping %d microseconds",usec);
usleep(usec);
}
/* read backwards until we seek */
logC("\n\t\t<<< ");
sofar=cachegran;
while(sofar){
sofar--;
ret = cdda_read_timed(d,NULL,offset+sofar,1,&x);
if(ret<=0)break;
logC("%d:%d:%d ",offset+sofar,ret,x);
if(x>=MIN_SEEK_MS){
if(cachegran == sofar+1){
i++;
}else{
cachegran=sofar+1;
i=0;
}
break;
}
if(sofar==0)cachegran=0;
}
error2:
if(ret<=0){
offset+=cachesize;
retry++;
if(retry>10 || offset+cachesize>lastsector){
reportC("\n\tToo many read errors while performing drive cache checks;"
"\n\t aborting test.\n\n");
return(-1);
}
reportC("\n\tRead error while performing drive cache checks;"
"\n\t choosing new offset and trying again.\n");
continue;
}
}
/* verify that the drive timing didn't suddenly change */
{
float newms=retime_drive(d, progress, log, offset, readahead, mspersector);
if(newms > mspersector*1.2){
mspersector=newms;
printC("\r");
reportC("\tDrive timing changed during test; retrying...");
continue;
}
}
break;
}
cachegran -= rollbehind;
logC("\n");
printC("\r");
reportC("\tCache tail granularity: %d sector(s) \n",cachegran);
/* Verify that a read that begins before the cached readahead dumps
the entire readahead cache */
/* This is tricky because we can't simply read a one sector back
seek, then rely on timing/seeking of subsequent sectors; the
drive may well not seek ahead if reading linearly would be faster
(and it often will be), and simply reading ahead after the seek
and watching timing will be inaccurate because the drive may roll
some readahead into the initial seek/read before returning the
first block. */
/* we will need to use the timing of reading from media in one form
or another and thus need to guard against slow bus transfer times
[eg, no DMA] swamping the actual read time from media. */
/* sample cache access for five realtime seconds. */
{
float cachems;
float readms;
int readsize = cachesize-rollbehind-8;
int retry=0;
if(readsize>cachesize-1)readsize=cachesize-1;
if(readsize<7){
reportC("\tCache size (considering rollbehind) too small to test cache speed.\n");
}else{
reportC("\tTesting cache transfer speed...");
/* cache timing isn't dependent on rotational speed, so get a good
read and then just hammer the cache; we will only need to do it once */
/* we need to time the cache using the most conservative
possible read pattern; many drives will flush cache on *any*
nonlinear access, but not if the read starts from the same
point. The original cache size verification algo knows this,
and we need to do it the same way here (this the '0' for
'initial_seek' on time_drve */
while(1){
int ret=time_drive(d, NULL, log, offset, readsize, 0);
if(ret==-404) return -1;
if(ret>0)break;
retry++;
if(retry==10){
reportC("\n\tToo many read errors while performing drive cache checks;"
"\n\t aborting test.\n\n");
return(-1);
}
reportC("\n\tRead error while performing drive cache checks;"
"\n\t choosing new offset and trying again.\n");
}
{
int elapsed=0;
int sectors=0;
int spinner=0;
while(elapsed<5000){
sectors += readsize;
elapsed += time_drive(d, NULL, log, offset, readsize, 0);
spinner = elapsed*5/1000%4;
printC("\b%c",(spinner==0?'o':(spinner==1?'O':(spinner==2?'o':'.'))));
}
printC("\r");
logC("\n");
cachems = elapsed/(float)sectors;
reportC("\t Cache read speed: %.2fms/sector [%dx]\n",
cachems,(int)(1000./75./cachems));
}
if(cachems*3>mspersector){
reportC("\tCache access insufficiently faster than media access to\n"
"\t\tperform cache backseek tests\n\n");
}else{
/* now do the read/backseek combo */
reportC("\tTesting that backseek flushes cache...");
{
int total=0;
int elapsed=0;
int sectors=0;
int spinner=0;
int retry=0;
while(elapsed<5000 && total<25){ /* don't kill the drive */
int ret;
while(1){
/* need to force seek/flush, but don't kill the drive */
int seekpos = offset+cachesize+20000;
if(seekpos>lastsector-150)seekpos=lastsector-150;
ret=cdda_read(d, NULL, seekpos, 1);
if(ret>0) ret=time_drive(d, NULL, log, offset+1, readsize, 1);
if(ret>=0) ret=time_drive(d, NULL, log, offset, readsize, 1);
if(ret<=0){
retry++;
if(retry==10){
reportC("\n\tToo many read errors while performing drive cache checks;"
"\n\t aborting test.\n\n");
return(-1);
}
reportC("\n\tRead error while performing drive cache checks; retrying...");
}else
break;
}
sectors += (readsize-1);
elapsed += ret;
total++;
spinner = elapsed*5/1000%4;
printC("\b%c",(spinner==0?'o':(spinner==1?'O':(spinner==2?'o':'.'))));
}
printC("\r");
logC("\n");
readms = elapsed/(float)sectors;
reportC("\t Access speed after backseek: %.2fms/sector [%dx]\n",
readms,(int)(1000./75./readms));
if(readms*2. < mspersector ||
cachems*2. > readms){
reportC("\tWARNING: Read timing after backseek faster than expected!\n"
"\t It's possible/likely that this drive is not\n"
"\t flushing the readahead cache on backward seeks!\n\n");
warn=1;
}else{
reportC("\tBackseek flushes the cache as expected\n");
}
}
}
}
}
return warn;
}
|