File: resample.c

package info (click to toggle)
cdrkit 9:1.1.11-3
  • links: PTS
  • area: main
  • in suites: bullseye, buster, jessie, jessie-kfreebsd, sid, stretch
  • size: 7,464 kB
  • sloc: ansic: 107,182; perl: 968; sh: 481; makefile: 229; sed: 4
file content (985 lines) | stat: -rw-r--r-- 29,005 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
/*
 * This file has been modified for the cdrkit suite.
 *
 * The behaviour and appearence of the program code below can differ to a major
 * extent from the version distributed by the original author(s).
 *
 * For details, see Changelog file distributed with the cdrkit package. If you
 * received this file from another source then ask the distributing person for
 * a log of modifications.
 *
 */

/* @(#)resample.c	1.15 02/11/21 Copyright 1998,1999,2000 Heiko Eissfeldt */
/* resampling module 
 *
 * The audio data has been read. Here are the
 * functions to ensure a correct continuation
 * of the output stream and to convert to a
 * lower sample rate.
 *
 */

#undef DEBUG_VOTE_ENDIANESS
#undef DEBUG_SHIFTS		/* simulate bad cdrom drives */
#undef DEBUG_MATCHING
#undef SHOW_JITTER
#undef CHECK_MEM

#include "config.h"
#include <timedefs.h>
#include <stdio.h>
#include <stdxlib.h>
#include <utypes.h>
#include <unixstd.h>
#include <standard.h>
#include <strdefs.h>
#include <limits.h>
#include <assert.h>
#include <math.h>

#include <usal/scsitransp.h>

#include "mytype.h"
#include "icedax.h"
#include "interface.h"
#include "byteorder.h"
#include "ringbuff.h"
#include "resample.h"
#include "toc.h"
#include "sndfile.h"
#include "sndconfig.h"
#include "global.h"
#include "exitcodes.h"


int waitforsignal = 0;	/* flag: wait for any audio response */
int any_signal = 0;

short undersampling;	/* conversion factor */
short samples_to_do;	/* loop variable for conversion */
int Halved;		/* interpolate due to non integral divider */

static long lsum = 0, rsum = 0;	       /* accumulator for left/right channel */
static long ls2 = 0, rs2 = 0, ls3 = 0, rs3 = 0, auxl = 0, auxr = 0;

static const unsigned char *my_symmemmem(const unsigned char *HAYSTACK, 
													  const size_t HAYSTACK_LEN, 
													  const unsigned char *const NEEDLE, 
													  const size_t NEEDLE_LEN);
static const unsigned char *my_memmem(const unsigned char *HAYSTACK, 
												  const size_t HAYSTACK_LEN, 
												  const unsigned char *const NEEDLE, 
												  const size_t NEEDLE_LEN);
static const unsigned char *my_memrmem(const unsigned char *HAYSTACK, 
													const size_t HAYSTACK_LEN, 
													const unsigned char *const NEEDLE, 
													const size_t NEEDLE_LEN);
static const unsigned char *sync_buffers(const unsigned char *const newbuf);
static long interpolate(long p1, long p2, long p3);
static void emit_sample(long lsumval, long rsumval, long channels);
static void change_endianness(UINT4 *pSam, unsigned int Samples);
static void swap_channels(UINT4 *pSam, unsigned int Samples);
static int guess_endianess(UINT4 *p, Int16_t *p2, unsigned int SamplesToDo);


#ifdef CHECK_MEM
static void check_mem(const unsigned char *p, unsigned long amount, 
							 const unsigned char *q, unsigned line, char *file);

static void check_mem(const unsigned char *p, unsigned long amount, 
                      const unsigned char *q, unsigned line, char *file)
{
	if (p < q || p+amount > q + ENTRY_SIZE) {
		fprintf(stderr, "file %s, line %u: invalid buffer range (%p - %p), allowed is (%p - %p)\n",
			file,line,p, p+amount-1, q, q + ENTRY_SIZE-1);
		exit(INTERNAL_ERROR);
	}
}
#endif


#ifdef DEBUG_MATCHING
int memcmp(const void * a, const void * b, size_t c)
{
  return 1;
}
#endif

static const unsigned char *
my_symmemmem(const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, 
             const unsigned char * const NEEDLE, const size_t NEEDLE_LEN)
{
  const unsigned char * const UPPER_LIMIT = HAYSTACK + HAYSTACK_LEN - NEEDLE_LEN - 1;
  const unsigned char * HAYSTACK2 = HAYSTACK-1;

  while (HAYSTACK <= UPPER_LIMIT) {
    if (memcmp(NEEDLE, HAYSTACK, NEEDLE_LEN) == 0) {
      return HAYSTACK;
    } else {
      if (memcmp(NEEDLE, HAYSTACK2, NEEDLE_LEN) == 0) {
        return HAYSTACK2;
      }
      HAYSTACK2--;
      HAYSTACK++;
    }
  }
#ifdef DEBUG_MATCHING
  HAYSTACK2++;
  HAYSTACK--;
  fprintf(stderr, "scompared %p-%p with %p-%p (%p)\n",
 	 NEEDLE, NEEDLE + NEEDLE_LEN-1,
	 HAYSTACK2, HAYSTACK + NEEDLE_LEN-1, HAYSTACK);
#endif
  return NULL;
}

static const unsigned char *
my_memmem(const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, 
          const unsigned char * const NEEDLE, const size_t NEEDLE_LEN)
{
  const unsigned char * const UPPER_LIMIT = HAYSTACK + HAYSTACK_LEN - NEEDLE_LEN;

  while (HAYSTACK <= UPPER_LIMIT) {
    if (memcmp(NEEDLE, HAYSTACK, NEEDLE_LEN) == 0) {
      return HAYSTACK;
    } else {
      HAYSTACK++;
    }
  }
#ifdef DEBUG_MATCHING
  HAYSTACK--;
  fprintf(stderr, "fcompared %p-%p with %p-%p (%p)\n",
 	 NEEDLE, NEEDLE + NEEDLE_LEN-1,
	 HAYSTACK - HAYSTACK_LEN + NEEDLE_LEN, HAYSTACK + NEEDLE_LEN-1,
	 HAYSTACK);
#endif
  return NULL;
}

static const unsigned char *
my_memrmem(const unsigned char *HAYSTACK, const size_t HAYSTACK_LEN, 
           const unsigned char * const NEEDLE, const size_t NEEDLE_LEN)
{
  const unsigned char * const LOWER_LIMIT = HAYSTACK - (HAYSTACK_LEN - 1);

  while (HAYSTACK >= LOWER_LIMIT) {
    if (memcmp(NEEDLE, HAYSTACK, NEEDLE_LEN) == 0) {
      return HAYSTACK;
    } else {
      HAYSTACK--;
    }
  }
#ifdef DEBUG_MATCHING
  HAYSTACK++;
  fprintf(stderr, "bcompared %p-%p with %p-%p (%p)\n",
 	 NEEDLE, NEEDLE + NEEDLE_LEN-1,
	 HAYSTACK, HAYSTACK + (HAYSTACK_LEN - 1),
	 HAYSTACK + (HAYSTACK_LEN - 1) - NEEDLE_LEN - 1);
#endif
  return NULL;
}

/* find continuation in new buffer */
static const unsigned char *
sync_buffers(const unsigned char * const newbuf)
{
    const unsigned char *retval = newbuf;

    if (global.overlap != 0) {
      /* find position of SYNC_SIZE bytes 
	 of the old buffer in the new buffer */
      size_t haystack_len;
      const size_t needle_len = SYNC_SIZE;
      const unsigned char * const oldbuf = (const unsigned char *) (get_previous_read_buffer()->data);
      const unsigned char * haystack;
      const unsigned char * needle;

      /* compare the previous buffer with the new one
       *
       * 1. symmetrical search:
       *   look for the last SYNC_SIZE bytes of the previous buffer
       *   in the new buffer (from the optimum to the outer positions).
       *
       * 2. if the first approach did not find anything do forward search
       *   look for the last SYNC_SIZE bytes of the previous buffer
       *   in the new buffer (from behind the overlap to the end).
       *   
       */

      haystack_len = min((global.nsectors - global.overlap)*CD_FRAMESIZE_RAW
			 +SYNC_SIZE+1,
     			 global.overlap*CD_FRAMESIZE_RAW);
      /* expected here */
      haystack = newbuf + CD_FRAMESIZE_RAW*global.overlap - SYNC_SIZE;
      needle = oldbuf + CD_FRAMESIZE_RAW*global.nsectors - SYNC_SIZE; 

#ifdef DEBUG_MATCHING
	fprintf(stderr, "oldbuf    %p-%p  new %p-%p %u %u %u\n",
		oldbuf, oldbuf + CD_FRAMESIZE_RAW*global.nsectors - 1,
		newbuf, newbuf + CD_FRAMESIZE_RAW*global.nsectors - 1,
		CD_FRAMESIZE_RAW*global.nsectors, global.nsectors, global.overlap);
#endif

      retval = my_symmemmem(haystack, haystack_len, needle, needle_len);
      if (retval != NULL) {
	retval += SYNC_SIZE;
      } else {
	/* fallback to asymmetrical search */

	/* if there is no asymmetrical part left, return with 'not found' */
	if (2*global.overlap == global.nsectors) {
	  retval = NULL;
	} else if (2*global.overlap > global.nsectors) {
	  /* the asymmetrical part is in front, search backwards */
          haystack_len = (2*global.overlap-global.nsectors)*CD_FRAMESIZE_RAW;
          haystack = newbuf + haystack_len - 1;
          retval = my_memrmem(haystack, haystack_len, needle, needle_len);
	} else {
	  /* the asymmetrical part is at the end, search forward */
          haystack = newbuf + 2*(global.overlap*CD_FRAMESIZE_RAW - SYNC_SIZE);
          haystack_len = (global.nsectors-2*global.overlap)*CD_FRAMESIZE_RAW + 2*SYNC_SIZE;
          retval = my_memmem(haystack, haystack_len, needle, needle_len);
	}
        if (retval != NULL)
	  retval += SYNC_SIZE;
      }

#ifdef SHOW_JITTER
      if (retval) {
	fprintf(stderr,"%d\n",
		retval-(newbuf+global.overlap*CD_FRAMESIZE_RAW));
      } else {
	fprintf(stderr,"no match\n");
      }
#endif
    }

    return retval;
}

/* quadratic interpolation
 * p1, p3 span the interval 0 - 2. give interpolated value for 1/2 */
static long int 
interpolate(long int p1, long int p2, long int p3)
{
  return (3L*p1 + 6L*p2 - p3)/8L;
}

static unsigned char *pStart;	/* running ptr defining end of output buffer */
static unsigned char *pDst;	/* start of output buffer */
/*
 * Write the filtered sample into the output buffer.
 */
static void 
emit_sample(long lsumval, long rsumval, long channels)
{
    if (global.findminmax) {
       if (rsumval > global.maxamp[0]) global.maxamp[0] = rsumval;
       if (rsumval < global.minamp[0]) global.minamp[0] = rsumval;
       if (lsumval < global.minamp[1]) global.minamp[1] = lsumval;
       if (lsumval > global.maxamp[1]) global.maxamp[1] = lsumval;
    }
    /* convert to output format */
    if ( channels == 1 ) {
	Int16_t sum;       /* mono section */
	sum = ( lsumval + rsumval ) >> (global.sh_bits + 1);
	if ( global.sh_bits == 8 ) {
	    if ( waitforsignal == 1 ) {
	      if ( any_signal == 0 ) {
		if ( ( (char) sum) != '\0' ) {
		    pStart = (unsigned char *) pDst;
		    any_signal = 1;
		    *pDst++ = ( unsigned char ) sum + ( 1 << 7 );
		} else global.SkippedSamples++;
	      } else *pDst++ = ( unsigned char ) sum + ( 1 << 7 );
            } else *pDst++ = ( unsigned char ) sum + ( 1 << 7 );
	} else {
	    Int16_t * myptr = (Int16_t *) pDst;
	    if ( waitforsignal == 1 ) {
	      if ( any_signal == 0 ) {
	        if ( sum != 0 ) {
		    pStart = (unsigned char *) pDst;
		    any_signal = 1;
		    *myptr = sum; pDst += sizeof( Int16_t );
		} else global.SkippedSamples++;
	      } else { *myptr = sum; pDst += sizeof( Int16_t ); }
	    } else { *myptr = sum; pDst += sizeof( Int16_t ); }
	}
    } else {
	/* stereo section */
	lsumval >>= global.sh_bits;
	rsumval >>= global.sh_bits;
	if ( global.sh_bits == 8 ) {
	    if ( waitforsignal == 1 ) {
	      if ( any_signal == 0 ) {
	        if ( ((( char ) lsumval != '\0') || (( char ) rsumval != '\0'))) {
		    pStart = (unsigned char *) pDst;
		    any_signal = 1;
		    *pDst++ = ( unsigned char )( short ) lsumval + ( 1 << 7 );
		    *pDst++ = ( unsigned char )( short ) rsumval + ( 1 << 7 );
		} else global.SkippedSamples++;
	      } else {
		*pDst++ = ( unsigned char )( short ) lsumval + ( 1 << 7 );
		*pDst++ = ( unsigned char )( short ) rsumval + ( 1 << 7 );
	      }
	    } else {
		*pDst++ = ( unsigned char )( short ) lsumval + ( 1 << 7 );
		*pDst++ = ( unsigned char )( short ) rsumval + ( 1 << 7 );
	    }
	} else {
	    Int16_t * myptr = (Int16_t *) pDst;
	    if ( waitforsignal == 1 ) {
	      if ( any_signal == 0 ) {
	        if ( ((( Int16_t ) lsumval != 0) || (( Int16_t ) rsumval != 0))) {
		    pStart = (unsigned char *) pDst;
		    any_signal = 1;
		    *myptr++ = ( Int16_t ) lsumval;
		    *myptr   = ( Int16_t ) rsumval;
		    pDst += 2*sizeof( Int16_t );
		} else global.SkippedSamples++;
	      } else {
		*myptr++ = ( Int16_t ) lsumval;
		*myptr   = ( Int16_t ) rsumval;
		pDst += 2*sizeof( Int16_t );
	      }
	    } else {
	      *myptr++ = ( Int16_t ) lsumval;
	      *myptr   = ( Int16_t ) rsumval;
	      pDst += 2*sizeof( Int16_t );
	    }
	}
    }
}

static void change_endianness(UINT4 *pSam, unsigned int Samples)
{
  UINT4 *pend = (pSam + Samples);

  /* type UINT4 may not be greater than the assumed biggest type */
#if (SIZEOF_LONG_INT < 4)
error type unsigned long is too small
#endif

#if (SIZEOF_LONG_INT == 4)

  unsigned long *plong = (unsigned long *)pSam;

  for (; plong < pend;) {
    *plong = ((*plong >> 8L) & UINT_C(0x00ff00ff)) |
             ((*plong << 8L) & UINT_C(0xff00ff00));
    plong++;
  }
#else  /* sizeof long unsigned > 4 bytes */
#if (SIZEOF_LONG_INT == 8)
#define INTEGRAL_LONGS (SIZEOF_LONG_INT-1UL)
  register unsigned long *plong;
  unsigned long *pend0 = (unsigned long *) (((unsigned long) pend) & ~ INTEGRAL_LONGS);

  if (((unsigned long) pSam) & INTEGRAL_LONGS) {
    *pSam = ((*pSam >> 8L) & UINT_C(0x00ff00ff)) |
            ((*pSam << 8L) & UINT_C(0xff00ff00));
    pSam++;
  }

  plong = (unsigned long *)pSam;

  for (; plong < pend0;) {
    *plong = ((*plong >> 8L) & ULONG_C(0x00ff00ff00ff00ff)) |
             ((*plong << 8L) & ULONG_C(0xff00ff00ff00ff00));
    plong++;
  }

  if (((unsigned long *) pend) != pend0) {
    UINT4 *pint = (UINT4 *) pend0;

    for (;pint < pend;) {
      *pint = ((*pint >> 8) & UINT_C(0x00ff00ff)) |
              ((*pint << 8) & UINT_C(0xff00ff00));
      pint++;
    }
  }
#else  /* sizeof long unsigned > 4 bytes but not 8 */
  {
    UINT4 *pint = pSam;

    for (;pint < pend;) {
      *pint = ((*pint >> 8) & UINT_C(0x00ff00ff)) |
              ((*pint << 8) & UINT_C(0xff00ff00));
      pint++;
    }
  }
#endif
#endif
}

static void swap_channels(UINT4 *pSam, unsigned int Samples)
{
  UINT4 *pend = (pSam + Samples);

  /* type UINT4 may not be greater than the assumed biggest type */
#if (SIZEOF_LONG_INT < 4)
error type unsigned long is too small
#endif

#if (SIZEOF_LONG_INT == 4)

  unsigned long *plong = (unsigned long *)pSam;

  for (; plong < pend;) {
    *plong = ((*plong >> 16L) & UINT_C(0x0000ffff)) |
             ((*plong << 16L) & UINT_C(0xffff0000));
    plong++;
  }
#else  /* sizeof long unsigned > 4 bytes */
#if (SIZEOF_LONG_INT == 8)
#define INTEGRAL_LONGS (SIZEOF_LONG_INT-1UL)
  register unsigned long *plong;
  unsigned long *pend0 = (unsigned long *) (((unsigned long) pend) & ~ INTEGRAL_LONGS);

  if (((unsigned long) pSam) & INTEGRAL_LONGS) {
    *pSam = ((*pSam >> 16L) & UINT_C(0x0000ffff)) |
            ((*pSam << 16L) & UINT_C(0xffff0000));
    pSam++;
  }

  plong = (unsigned long *)pSam;

  for (; plong < pend0;) {
    *plong = ((*plong >> 16L) & ULONG_C(0x0000ffff0000ffff)) |
             ((*plong << 16L) & ULONG_C(0xffff0000ffff0000));
    plong++;
  }

  if (((unsigned long *) pend) != pend0) {
    UINT4 *pint = (UINT4 *) pend0;

    for (;pint < pend;) {
      *pint = ((*pint >> 16L) & UINT_C(0x0000ffff)) |
              ((*pint << 16L) & UINT_C(0xffff0000));
      pint++;
    }
  }
#else  /* sizeof long unsigned > 4 bytes but not 8 */
  {
    UINT4 *pint = pSam;

    for (;pint < pend;) {
      *pint = ((*pint >> 16L) & UINT_C(0x0000ffff)) |
              ((*pint << 16L) & UINT_C(0xffff0000));
      pint++;
    }
  }
#endif
#endif
}

#ifdef	ECHO_TO_SOUNDCARD
static long ReSampleBuffer(unsigned char *p, unsigned char *newp, 
									long samples, int samplesize);
static long ReSampleBuffer(unsigned char *p, unsigned char *newp, 
                           long samples, int samplesize)
{
	double idx=0.0;
	UINT4  di=0,si=0;

	if (global.playback_rate == 100.0) {
		memcpy(newp, p, samplesize* samples);
		di = samples;
	} else while( si < (UINT4)samples ){
		memcpy( newp+(di*samplesize), p+(si*samplesize), samplesize );
		idx += (double)(global.playback_rate/100.0);
		si = (UINT4)idx;
		di++;
	}
	return di*samplesize;
}
#endif

static int guess_endianess(UINT4 *p, Int16_t *p2, unsigned SamplesToDo)
{
    /* analyse samples */
    int vote_for_little = 0;
    int vote_for_big = 0;
    int total_votes;

    while (((UINT4 *)p2 - p) + (unsigned) 1 < SamplesToDo) {
      unsigned char *p3 = (unsigned char *)p2;
#if MY_LITTLE_ENDIAN == 1
      int diff_lowl = *(p2+0) - *(p2+2);
      int diff_lowr = *(p2+1) - *(p2+3);
      int diff_bigl = ((*(p3  ) << 8) + *(p3+1)) - ((*(p3+4) << 8) + *(p3+5));
      int diff_bigr = ((*(p3+2) << 8) + *(p3+3)) - ((*(p3+6) << 8) + *(p3+7));
#else
      int diff_lowl = ((*(p3+1) << 8) + *(p3  )) - ((*(p3+5) << 8) + *(p3+4));
      int diff_lowr = ((*(p3+3) << 8) + *(p3+2)) - ((*(p3+7) << 8) + *(p3+6));
      int diff_bigl = *(p2+0) - *(p2+2);
      int diff_bigr = *(p2+1) - *(p2+3);
#endif

      if ((abs(diff_lowl) + abs(diff_lowr)) <
	  (abs(diff_bigl) + abs(diff_bigr))) {
	vote_for_little++;
      } else {
	if ((abs(diff_lowl) + abs(diff_lowr)) >
	    (abs(diff_bigl) + abs(diff_bigr))) {
	  vote_for_big++;
	}
      }
      p2 += 2;
   }
#ifdef DEBUG_VOTE_ENDIANESS
   if (global.quiet != 1)
     fprintf(stderr, "votes for little: %4d,  votes for big: %4d\n", 
		vote_for_little, vote_for_big);
#endif
   total_votes = vote_for_big + vote_for_little;
   if (total_votes < 3
       || abs(vote_for_big - vote_for_little) < total_votes/3) {
     return -1;
   } else {
	if (vote_for_big > vote_for_little)
		return 1;
	else
		return 0;
   }
}

int jitterShift = 0; 

void handle_inputendianess(UINT4 *p, unsigned SamplesToDo)
{
  /* if endianess is unknown, guess endianess based on 
     differences between succesive samples. If endianess
     is correct, the differences are smaller than with the
     opposite byte order.
   */
  if ((*in_lendian) < 0) {
    Int16_t *p2 = (Int16_t *)p;

    /* skip constant samples */
    while ((((UINT4 *)p2 - p) + (unsigned) 1 < SamplesToDo)
           && *p2 == *(p2+2)) p2++;

    if (((UINT4 *)p2 - p) + (unsigned) 1 < SamplesToDo) {
      switch (guess_endianess(p, p2, SamplesToDo)) {
        case -1: break;
        case  1: (*in_lendian) = 0;
#if 0
	         if (global.quiet != 1)
		   fprintf(stderr, "big endian detected\n");
#endif
	break;
        case  0: (*in_lendian) = 1;
#if 0
	         if (global.quiet != 1)
		   fprintf(stderr, "little endian detected\n");
#endif
	break;
      }
    }
  }

  /* ENDIAN ISSUES:
   * the individual endianess of cdrom/cd-writer, cpu, 
   * sound card and audio output format need a careful treatment.
   *
   * For possible sample processing (rate conversion) we need
   * the samples in cpu byte order. This is the first conversion.
   *
   * After processing it depends on the endianness of the output
   * format, whether a second conversion is needed.
   *
   */

  if (global.need_hostorder && (*in_lendian) != MY_LITTLE_ENDIAN) {
    /* change endianess of delivered samples to native cpu order */
    change_endianness(p, SamplesToDo);
  }
}

unsigned char *
synchronize(UINT4 *p, unsigned SamplesToDo, unsigned TotSamplesDone)
{
  static int jitter = 0;
  char *pSrc;                   /* start of cdrom buffer */

  /* synchronisation code */
  if (TotSamplesDone != 0 && global.overlap != 0 && SamplesToDo > CD_FRAMESAMPLES) {

    pSrc = (char *) sync_buffers((unsigned char *)p);
    if (!pSrc ) {
      return NULL;
    }
    if (pSrc) {
      jitter = ((unsigned char *)pSrc - (((unsigned char *)p) + global.overlap*CD_FRAMESIZE_RAW))/4;
      jitterShift += jitter;
      SamplesToDo -= jitter + global.overlap*CD_FRAMESAMPLES;
#if 0
      fprintf(stderr,
	    "Length: pre %d, diff1 %ld, diff2 %ld, min %ld\n", SamplesToDo,
	   (TotSamplesWanted - TotSamplesDone),
	   SamplesNeeded((TotSamplesWanted - TotSamplesDone), undersampling),
	   min(SamplesToDo, SamplesNeeded((TotSamplesWanted - TotSamplesDone), undersampling)));
#endif
    }
  } else {
    pSrc = ( char * ) p;
  }
  return (unsigned char *) pSrc;
}

/* convert cdda data to required output format
 * sync code for unreliable cdroms included
 * 
 */
long 
SaveBuffer(UINT4 *p, unsigned long SamplesToDo, unsigned long *TotSamplesDone)
{
  UINT4 *pSrc;                   /* start of cdrom buffer */
  UINT4 *pSrcStop;               /* end of cdrom buffer */

  /* in case of different endianness between host and output format,
     or channel swaps, or deemphasizing
     copy in a seperate buffer and modify the local copy */
  if ( ((((!global.need_hostorder && global.need_big_endian == (*in_lendian)) ||
	  (global.need_hostorder && global.need_big_endian != MY_BIG_ENDIAN)
         ) || (global.deemphasize != 0)
        ) && (global.OutSampleSize > 1)
       ) || global.swapchannels != 0) {
     static UINT4 *localoutputbuffer;
     if (localoutputbuffer == NULL) {
       localoutputbuffer = malloc(global.nsectors*CD_FRAMESIZE_RAW);
       if (localoutputbuffer == NULL) {
         perror("cannot allocate local buffer");
         return 1;
       }
     }
     memcpy(localoutputbuffer, p, SamplesToDo*4);
     p = localoutputbuffer;
  }

  pSrc = p;
  pDst = (unsigned char *) p;
  pStart = ( unsigned char * ) pSrc;
  pSrcStop = pSrc + SamplesToDo;

  /* code for subsampling and output stage */

  if (global.ismono && global.findmono) {
    Int16_t *pmm;
    for (pmm = (Int16_t *)pStart; (UINT4 *) pmm < pSrcStop; pmm += 2) {
      if (*pmm != *(pmm+1)) {
        global.ismono = 0;
        break;
      }
    }
  }
  /* optimize the case of no conversion */
  if (1 && undersampling == 1 && samples_to_do == 1 &&
       global.channels == 2 && global.OutSampleSize == 2 && Halved == 0) {
    /* output format is the original cdda format ->
     * just forward the buffer 
     */
      
    if ( waitforsignal != 0 && any_signal == 0) {
      UINT4 *myptr = (UINT4 *)pStart;
      while (myptr < pSrcStop && *myptr == 0) myptr++;
      pStart = (unsigned char *) myptr;
      /* scan for first signal */
      if ( (UINT4 *)pStart != pSrcStop ) {
	/* first non null amplitude is found in buffer */
	any_signal = 1;
 	global.SkippedSamples += ((UINT4 *)pStart - p);
      } else {
	global.SkippedSamples += (pSrcStop - p);
      }
    }
    pDst = (unsigned char *) pSrcStop;		/* set pDst to end */

    if (global.deemphasize && (Get_Preemphasis(get_current_track())) ) {
      /* this implements an attenuation treble shelving filter 
         to undo the effect of pre-emphasis. The filter is of
         a recursive first order */
      static Int16_t lastin[2] = { 0, 0 };
      static double lastout[2] = { 0.0, 0.0 };
      Int16_t *pmm;

      /* Here is the gnuplot file for the frequency response
         of the deemphasis. The error is below +-0.1dB

# first define the ideal filter. We use the tenfold sampling frequency.
T=1./441000.
OmegaU=1./15E-6
OmegaL=15./50.*OmegaU
V0=OmegaL/OmegaU
H0=V0-1.
B=V0*tan(OmegaU*T/2.)
# the coefficients follow
a1=(B - 1.)/(B + 1.)
b0=(1.0 + (1.0 - a1) * H0/2.)
b1=(a1 + (a1 - 1.0) * H0/2.)
# helper variables
D=b1/b0
o=2*pi*T
H2(f)=b0*sqrt((1+2*cos(f*o)*D+D*D)/(1+2*cos(f*o)*a1+a1*a1))
# now approximate the ideal curve with a fitted one for sampling frequency
# of 44100 Hz.
T2=1./44100.
V02=0.3365
OmegaU2=1./19E-6
B2=V02*tan(OmegaU2*T2/2.)
# the coefficients follow
a12=(B2 - 1.)/(B2 + 1.)
b02=(1.0 + (1.0 - a12) * (V02-1.)/2.)
b12=(a12 + (a12 - 1.0) * (V02-1.)/2.)
# helper variables
D2=b12/b02
o2=2*pi*T2
H(f)=b02*sqrt((1+2*cos(f*o2)*D2+D2*D2)/(1+2*cos(f*o2)*a12+a12*a12))
# plot best, real, ideal, level with halved attenuation,
#      level at full attentuation, 10fold magnified error
set logscale x
set grid xtics ytics mxtics mytics
plot [f=1000:20000] [-12:2] 20*log10(H(f)),20*log10(H2(f)),  20*log10(OmegaL/(2*pi*f)), 0.5*20*log10(V0), 20*log10(V0), 200*log10(H(f)/H2(f))
pause -1 "Hit return to continue"
       */

#ifdef TEST
#define V0	0.3365
#define OMEGAG	(1./19e-6)
#define T	(1./44100.)
#define H0	(V0-1.)
#define B	(V0*tan((OMEGAG * T)/2.0))
#define a1	((B - 1.)/(B + 1.))
#define b0 	(1.0 + (1.0 - a1) * H0/2.0)
#define b1 	(a1 + (a1 - 1.0) * H0/2.0)
#undef	V0
#undef	OMEGAG
#undef	T
#undef	H0
#undef	B
#else
#define a1	-0.62786881719628784282
#define b0 	0.45995451989513153057
#define b1 	-0.08782333709141937339
#endif

      for (pmm = (Int16_t *)pStart; pmm < (Int16_t *)pDst;) {
        lastout[0] = *pmm * b0 + lastin[0] * b1 - lastout[0] * a1;
        lastin[0] = *pmm;
        *pmm++ = lastout[0] > 0.0 ? lastout[0] + 0.5 : lastout[0] - 0.5;
        lastout[1] = *pmm * b0 + lastin[1] * b1 - lastout[1] * a1;
        lastin[1] = *pmm;
        *pmm++ = lastout[1] > 0.0 ? lastout[1] + 0.5 : lastout[1] - 0.5;
      }
#undef	a1
#undef	b0
#undef	b1
    }

    if (global.swapchannels == 1) {
	swap_channels((UINT4 *)pStart, SamplesToDo);
    }

    if (global.findminmax) {
      Int16_t *pmm;
      for (pmm = (Int16_t *)pStart; pmm < (Int16_t *)pDst; pmm++) {
        if (*pmm < global.minamp[1]) global.minamp[1] = *pmm;
        if (*pmm > global.maxamp[1]) global.maxamp[1] = *pmm;
        pmm++;
        if (*pmm < global.minamp[0]) global.minamp[0] = *pmm;
        if (*pmm > global.maxamp[0]) global.maxamp[0] = *pmm;
      }
    }
  } else {

#define none_missing	0
#define one_missing	1
#define two_missing	2
#define collecting	3

    static int sample_state = collecting;
    static int Toggle_on = 0;

    if (global.channels == 2 && global.swapchannels == 1) {
	swap_channels((UINT4 *)pStart, SamplesToDo);
    }

    /* conversion required */
    while ( pSrc < pSrcStop ) {
	  
	long l,r;

	long iSamples_left = (pSrcStop - pSrc) / sizeof(Int16_t) / 2;
	Int16_t *myptr = (Int16_t *) pSrc;

	/* LSB l, MSB l */
	l = *myptr++;	/* left channel */
	r = *myptr++;	/* right channel */
	pSrc = (UINT4 *) myptr;

	switch (sample_state) {
	case two_missing:
two__missing:
	    ls2 += l; rs2 += r;
	    if (undersampling > 1) {
		ls3 += l; rs3 += r;
	    }
	    sample_state = one_missing;
	    break;
	case one_missing:
	    auxl = l; auxr = r;

	    ls3 += l; rs3 += r;
	    sample_state = none_missing;

	    /* FALLTHROUGH */
none__missing:
	case none_missing:
	    /* Filtered samples are complete. Now interpolate and scale. */

	    if (Halved != 0 && Toggle_on == 0) {
                lsum = interpolate(lsum, ls2, ls3)/(int) undersampling;
	        rsum = interpolate(rsum, rs2, rs3)/(int) undersampling;
            } else {
		lsum /= (int) undersampling;
		rsum /= (int) undersampling;
            }
	    emit_sample(lsum, rsum, global.channels);
	    /* reload counter */
	    samples_to_do = undersampling - 1;
	    lsum = auxl;
	    rsum = auxr;
	    /* reset sample register */
	    auxl = ls2 = ls3 = 0;
	    auxr = rs2 = rs3 = 0;
	    Toggle_on ^= 1;
	    sample_state = collecting;
	    break;
	case collecting:
	    if ( samples_to_do > 0) {
		samples_to_do--;
		if (Halved != 0 && Toggle_on == 0) {
		    /* Divider x.5 : we need data for quadratic interpolation */
		    iSamples_left--;

		    lsum += l; rsum += r;
		    if ( samples_to_do < undersampling - 1) {
			ls2 += l; rs2 += r;
		    }
		    if ( samples_to_do < undersampling - 2) {
			ls3 += l; rs3 += r;
		    }
		} else {
		    /* integral divider */
		    lsum += l;
		    rsum += r;
		    iSamples_left--;
		}
	    } else {
	        if (Halved != 0 && Toggle_on == 0) {
		    sample_state = two_missing;
		    goto two__missing;
		} else {
		    auxl = l;
		    auxr = r;
		    sample_state = none_missing;
		    goto none__missing;
		}
	    }
	    break;
	} /* switch state */

    } /* while */

    /* flush_buffer */
    if ((samples_to_do == 0 && Halved == 0))
    {
	if (Halved != 0 && Toggle_on == 0) {
	    lsum = interpolate(lsum, ls2, ls3)/(int) undersampling;
	    rsum = interpolate(rsum, rs2, rs3)/(int) undersampling;
	} else {
	    lsum /= (int) undersampling;
	    rsum /= (int) undersampling;
	}
	emit_sample(lsum, rsum, global.channels);
	
	/* reload counter */
	samples_to_do = undersampling;
	
	/* reset sample register */
	lsum = auxl = ls2 = ls3 = 0;
	rsum = auxr = rs2 = rs3 = 0;
	Toggle_on ^= 1;
	sample_state = collecting;
    }

  } /* if optimize else */

  if ( waitforsignal == 0 ) pStart = (unsigned char *)p;

  if ( waitforsignal == 0 || any_signal != 0) {
    int retval = 0;
    unsigned outlen;
    unsigned todo;

    assert(pDst >= pStart);
    outlen = (size_t) (pDst - pStart);

    if (outlen <= 0) return 0;

#ifdef	ECHO_TO_SOUNDCARD

    /* this assumes the soundcard needs samples in native cpu byte order */
    if (global.echo != 0) {
               static unsigned char *newp;
               unsigned    newlen;

               newlen = (100*(outlen/4))/global.playback_rate;
               newlen = (newlen*4);
               if ( (newp != NULL) || (newp = malloc( 2*global.nsectors*CD_FRAMESIZE_RAW+32 )) ) {
			newlen = ReSampleBuffer( pStart, newp, outlen/4, global.OutSampleSize*global.channels );
			write_snd_device((char *)newp, newlen);
               }
    }
#endif

    if ( global.no_file != 0 ) {
        *TotSamplesDone += SamplesToDo;
        return 0;
    }
    if ( (!global.need_hostorder && global.need_big_endian == (*in_lendian)) ||
	 (global.need_hostorder && global.need_big_endian != MY_BIG_ENDIAN)) {
      if ( global.OutSampleSize > 1) {
        /* change endianness from input sample or native cpu order 
           to required output endianness */
        change_endianness((UINT4 *)pStart, outlen/4);
      }
    }
    {
      unsigned char * p2 = pStart;

      todo = outlen;
      while (todo != 0) {
	int retval_;
	retval_ = global.audio_out->WriteSound ( global.audio, p2, todo );
	if (retval_ < 0) break;

	p2 += retval_;
	todo -= retval_;
      }
    }
    if (todo == 0) {
        *TotSamplesDone += SamplesToDo;
	return 0;
    } else {
        fprintf(stderr, "write(audio, 0x%p, %u) = %d\n",pStart,outlen,retval);
        perror("Probably disk space exhausted");
        return 1;
    }
  } else {
    *TotSamplesDone += SamplesToDo;
    return 0;
  }
}