1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
|
.. _guide-canvas:
==============================
Canvas: Designing Work-flows
==============================
.. contents::
:local:
:depth: 2
.. _canvas-subtasks:
.. _canvas-signatures:
Signatures
==========
.. versionadded:: 2.0
You just learned how to call a task using the tasks ``delay`` method
in the :ref:`calling <guide-calling>` guide, and this is often all you need,
but sometimes you may want to pass the signature of a task invocation to
another process or as an argument to another function.
A :func:`~celery.signature` wraps the arguments, keyword arguments, and execution options
of a single task invocation in a way such that it can be passed to functions
or even serialized and sent across the wire.
- You can create a signature for the ``add`` task using its name like this:
.. code-block:: pycon
>>> from celery import signature
>>> signature('tasks.add', args=(2, 2), countdown=10)
tasks.add(2, 2)
This task has a signature of arity 2 (two arguments): ``(2, 2)``,
and sets the countdown execution option to 10.
- or you can create one using the task's ``signature`` method:
.. code-block:: pycon
>>> add.signature((2, 2), countdown=10)
tasks.add(2, 2)
- There's also a shortcut using star arguments:
.. code-block:: pycon
>>> add.s(2, 2)
tasks.add(2, 2)
- Keyword arguments are also supported:
.. code-block:: pycon
>>> add.s(2, 2, debug=True)
tasks.add(2, 2, debug=True)
- From any signature instance you can inspect the different fields:
.. code-block:: pycon
>>> s = add.signature((2, 2), {'debug': True}, countdown=10)
>>> s.args
(2, 2)
>>> s.kwargs
{'debug': True}
>>> s.options
{'countdown': 10}
- It supports the "Calling API" of ``delay``,
``apply_async``, etc., including being called directly (``__call__``).
Calling the signature will execute the task inline in the current process:
.. code-block:: pycon
>>> add(2, 2)
4
>>> add.s(2, 2)()
4
``delay`` is our beloved shortcut to ``apply_async`` taking star-arguments:
.. code-block:: pycon
>>> result = add.delay(2, 2)
>>> result.get()
4
``apply_async`` takes the same arguments as the
:meth:`Task.apply_async <@Task.apply_async>` method:
.. code-block:: pycon
>>> add.apply_async(args, kwargs, **options)
>>> add.signature(args, kwargs, **options).apply_async()
>>> add.apply_async((2, 2), countdown=1)
>>> add.signature((2, 2), countdown=1).apply_async()
- You can't define options with :meth:`~@Task.s`, but a chaining
``set`` call takes care of that:
.. code-block:: pycon
>>> add.s(2, 2).set(countdown=1)
proj.tasks.add(2, 2)
Partials
--------
With a signature, you can execute the task in a worker:
.. code-block:: pycon
>>> add.s(2, 2).delay()
>>> add.s(2, 2).apply_async(countdown=1)
Or you can call it directly in the current process:
.. code-block:: pycon
>>> add.s(2, 2)()
4
Specifying additional args, kwargs, or options to ``apply_async``/``delay``
creates partials:
- Any arguments added will be prepended to the args in the signature:
.. code-block:: pycon
>>> partial = add.s(2) # incomplete signature
>>> partial.delay(4) # 4 + 2
>>> partial.apply_async((4,)) # same
- Any keyword arguments added will be merged with the kwargs in the signature,
with the new keyword arguments taking precedence:
.. code-block:: pycon
>>> s = add.s(2, 2)
>>> s.delay(debug=True) # -> add(2, 2, debug=True)
>>> s.apply_async(kwargs={'debug': True}) # same
- Any options added will be merged with the options in the signature,
with the new options taking precedence:
.. code-block:: pycon
>>> s = add.signature((2, 2), countdown=10)
>>> s.apply_async(countdown=1) # countdown is now 1
You can also clone signatures to create derivatives:
.. code-block:: pycon
>>> s = add.s(2)
proj.tasks.add(2)
>>> s.clone(args=(4,), kwargs={'debug': True})
proj.tasks.add(4, 2, debug=True)
Immutability
------------
.. versionadded:: 3.0
Partials are meant to be used with callbacks, any tasks linked, or chord
callbacks will be applied with the result of the parent task.
Sometimes you want to specify a callback that doesn't take
additional arguments, and in that case you can set the signature
to be immutable:
.. code-block:: pycon
>>> add.apply_async((2, 2), link=reset_buffers.signature(immutable=True))
The ``.si()`` shortcut can also be used to create immutable signatures:
.. code-block:: pycon
>>> add.apply_async((2, 2), link=reset_buffers.si())
Only the execution options can be set when a signature is immutable,
so it's not possible to call the signature with partial args/kwargs.
.. note::
In this tutorial I sometimes use the prefix operator `~` to signatures.
You probably shouldn't use it in your production code, but it's a handy shortcut
when experimenting in the Python shell:
.. code-block:: pycon
>>> ~sig
>>> # is the same as
>>> sig.delay().get()
.. _canvas-callbacks:
Callbacks
---------
.. versionadded:: 3.0
Callbacks can be added to any task using the ``link`` argument
to ``apply_async``:
.. code-block:: pycon
add.apply_async((2, 2), link=other_task.s())
The callback will only be applied if the task exited successfully,
and it will be applied with the return value of the parent task as argument.
As I mentioned earlier, any arguments you add to a signature,
will be prepended to the arguments specified by the signature itself!
If you have the signature:
.. code-block:: pycon
>>> sig = add.s(10)
then `sig.delay(result)` becomes:
.. code-block:: pycon
>>> add.apply_async(args=(result, 10))
...
Now let's call our ``add`` task with a callback using partial
arguments:
.. code-block:: pycon
>>> add.apply_async((2, 2), link=add.s(8))
As expected this will first launch one task calculating :math:`2 + 2`, then
another task calculating :math:`8 + 4`.
The Primitives
==============
.. versionadded:: 3.0
.. topic:: Overview
- ``group``
The group primitive is a signature that takes a list of tasks that should
be applied in parallel.
- ``chain``
The chain primitive lets us link together signatures so that one is called
after the other, essentially forming a *chain* of callbacks.
- ``chord``
A chord is just like a group but with a callback. A chord consists
of a header group and a body, where the body is a task that should execute
after all of the tasks in the header are complete.
- ``map``
The map primitive works like the built-in ``map`` function, but creates
a temporary task where a list of arguments is applied to the task.
For example, ``task.map([1, 2])`` -- results in a single task
being called, applying the arguments in order to the task function so
that the result is:
.. code-block:: python
res = [task(1), task(2)]
- ``starmap``
Works exactly like map except the arguments are applied as ``*args``.
For example ``add.starmap([(2, 2), (4, 4)])`` results in a single
task calling:
.. code-block:: python
res = [add(2, 2), add(4, 4)]
- ``chunks``
Chunking splits a long list of arguments into parts, for example
the operation:
.. code-block:: pycon
>>> items = zip(range(1000), range(1000)) # 1000 items
>>> add.chunks(items, 10)
will split the list of items into chunks of 10, resulting in 100
tasks (each processing 10 items in sequence).
The primitives are also signature objects themselves, so that they can be combined
in any number of ways to compose complex work-flows.
Here're some examples:
- Simple chain
Here's a simple chain, the first task executes passing its return value
to the next task in the chain, and so on.
.. code-block:: pycon
>>> from celery import chain
>>> # 2 + 2 + 4 + 8
>>> res = chain(add.s(2, 2), add.s(4), add.s(8))()
>>> res.get()
16
This can also be written using pipes:
.. code-block:: pycon
>>> (add.s(2, 2) | add.s(4) | add.s(8))().get()
16
- Immutable signatures
Signatures can be partial so arguments can be
added to the existing arguments, but you may not always want that,
for example if you don't want the result of the previous task in a chain.
In that case you can mark the signature as immutable, so that the arguments
cannot be changed:
.. code-block:: pycon
>>> add.signature((2, 2), immutable=True)
There's also a ``.si()`` shortcut for this, and this is the preferred way of
creating signatures:
.. code-block:: pycon
>>> add.si(2, 2)
Now you can create a chain of independent tasks instead:
.. code-block:: pycon
>>> res = (add.si(2, 2) | add.si(4, 4) | add.si(8, 8))()
>>> res.get()
16
>>> res.parent.get()
8
>>> res.parent.parent.get()
4
- Simple group
You can easily create a group of tasks to execute in parallel:
.. code-block:: pycon
>>> from celery import group
>>> res = group(add.s(i, i) for i in range(10))()
>>> res.get(timeout=1)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
- Simple chord
The chord primitive enables us to add a callback to be called when
all of the tasks in a group have finished executing. This is often
required for algorithms that aren't *embarrassingly parallel*:
.. code-block:: pycon
>>> from celery import chord
>>> res = chord((add.s(i, i) for i in range(10)), tsum.s())()
>>> res.get()
90
The above example creates 10 tasks that all start in parallel,
and when all of them are complete the return values are combined
into a list and sent to the ``tsum`` task.
The body of a chord can also be immutable, so that the return value
of the group isn't passed on to the callback:
.. code-block:: pycon
>>> chord((import_contact.s(c) for c in contacts),
... notify_complete.si(import_id)).apply_async()
Note the use of ``.si`` above; this creates an immutable signature,
meaning any new arguments passed (including to return value of the
previous task) will be ignored.
- Blow your mind by combining
Chains can be partial too:
.. code-block:: pycon
>>> c1 = (add.s(4) | mul.s(8))
# (16 + 4) * 8
>>> res = c1(16)
>>> res.get()
160
this means that you can combine chains:
.. code-block:: pycon
# ((4 + 16) * 2 + 4) * 8
>>> c2 = (add.s(4, 16) | mul.s(2) | (add.s(4) | mul.s(8)))
>>> res = c2()
>>> res.get()
352
Chaining a group together with another task will automatically
upgrade it to be a chord:
.. code-block:: pycon
>>> c3 = (group(add.s(i, i) for i in range(10)) | tsum.s())
>>> res = c3()
>>> res.get()
90
Groups and chords accepts partial arguments too, so in a chain
the return value of the previous task is forwarded to all tasks in the group:
.. code-block:: pycon
>>> new_user_workflow = (create_user.s() | group(
... import_contacts.s(),
... send_welcome_email.s()))
... new_user_workflow.delay(username='artv',
... first='Art',
... last='Vandelay',
... email='art@vandelay.com')
If you don't want to forward arguments to the group then
you can make the signatures in the group immutable:
.. code-block:: pycon
>>> res = (add.s(4, 4) | group(add.si(i, i) for i in range(10)))()
>>> res.get()
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
>>> res.parent.get()
8
.. _canvas-chain:
Chains
------
.. versionadded:: 3.0
Tasks can be linked together: the linked task is called when the task
returns successfully:
.. code-block:: pycon
>>> res = add.apply_async((2, 2), link=mul.s(16))
>>> res.get()
4
The linked task will be applied with the result of its parent
task as the first argument. In the above case where the result was 4,
this will result in ``mul(4, 16)``.
The results will keep track of any subtasks called by the original task,
and this can be accessed from the result instance:
.. code-block:: pycon
>>> res.children
[<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]
>>> res.children[0].get()
64
The result instance also has a :meth:`~@AsyncResult.collect` method
that treats the result as a graph, enabling you to iterate over
the results:
.. code-block:: pycon
>>> list(res.collect())
[(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
(<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]
By default :meth:`~@AsyncResult.collect` will raise an
:exc:`~@IncompleteStream` exception if the graph isn't fully
formed (one of the tasks hasn't completed yet),
but you can get an intermediate representation of the graph
too:
.. code-block:: pycon
>>> for result, value in res.collect(intermediate=True):
....
You can link together as many tasks as you like,
and signatures can be linked too:
.. code-block:: pycon
>>> s = add.s(2, 2)
>>> s.link(mul.s(4))
>>> s.link(log_result.s())
You can also add *error callbacks* using the `on_error` method:
.. code-block:: pycon
>>> add.s(2, 2).on_error(log_error.s()).delay()
This will result in the following ``.apply_async`` call when the signature
is applied:
.. code-block:: pycon
>>> add.apply_async((2, 2), link_error=log_error.s())
The worker won't actually call the errback as a task, but will
instead call the errback function directly so that the raw request, exception
and traceback objects can be passed to it.
Here's an example errback:
.. code-block:: python
import os
from proj.celery import app
@app.task
def log_error(request, exc, traceback):
with open(os.path.join('/var/errors', request.id), 'a') as fh:
print('--\n\n{0} {1} {2}'.format(
request.id, exc, traceback), file=fh)
To make it even easier to link tasks together there's
a special signature called :class:`~celery.chain` that lets
you chain tasks together:
.. code-block:: pycon
>>> from celery import chain
>>> from proj.tasks import add, mul
>>> # (4 + 4) * 8 * 10
>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
proj.tasks.add(4, 4) | proj.tasks.mul(8) | proj.tasks.mul(10)
Calling the chain will call the tasks in the current process
and return the result of the last task in the chain:
.. code-block:: pycon
>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
>>> res.get()
640
It also sets ``parent`` attributes so that you can
work your way up the chain to get intermediate results:
.. code-block:: pycon
>>> res.parent.get()
64
>>> res.parent.parent.get()
8
>>> res.parent.parent
<AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>
Chains can also be made using the ``|`` (pipe) operator:
.. code-block:: pycon
>>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()
Task ID
~~~~~~~
.. versionadded:: 5.4
A chain will inherit the task id of the last task in the chain.
Graphs
~~~~~~
In addition you can work with the result graph as a
:class:`~celery.utils.graph.DependencyGraph`:
.. code-block:: pycon
>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
>>> res.parent.parent.graph
285fa253-fcf8-42ef-8b95-0078897e83e6(1)
463afec2-5ed4-4036-b22d-ba067ec64f52(0)
872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
285fa253-fcf8-42ef-8b95-0078897e83e6(1)
463afec2-5ed4-4036-b22d-ba067ec64f52(0)
You can even convert these graphs to *dot* format:
.. code-block:: pycon
>>> with open('graph.dot', 'w') as fh:
... res.parent.parent.graph.to_dot(fh)
and create images:
.. code-block:: console
$ dot -Tpng graph.dot -o graph.png
.. image:: ../images/result_graph.png
.. _canvas-group:
Groups
------
.. versionadded:: 3.0
.. note::
Similarly to chords, tasks used in a group must *not* ignore their results.
See ":ref:`chord-important-notes`" for more information.
A group can be used to execute several tasks in parallel.
The :class:`~celery.group` function takes a list of signatures:
.. code-block:: pycon
>>> from celery import group
>>> from proj.tasks import add
>>> group(add.s(2, 2), add.s(4, 4))
(proj.tasks.add(2, 2), proj.tasks.add(4, 4))
If you **call** the group, the tasks will be applied
one after another in the current process, and a :class:`~celery.result.GroupResult`
instance is returned that can be used to keep track of the results,
or tell how many tasks are ready and so on:
.. code-block:: pycon
>>> g = group(add.s(2, 2), add.s(4, 4))
>>> res = g()
>>> res.get()
[4, 8]
Group also supports iterators:
.. code-block:: pycon
>>> group(add.s(i, i) for i in range(100))()
A group is a signature object, so it can be used in combination
with other signatures.
.. _group-callbacks:
Group Callbacks and Error Handling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Groups can have callback and errback signatures linked to them as well, however
the behaviour can be somewhat surprising due to the fact that groups are not
real tasks and simply pass linked tasks down to their encapsulated signatures.
This means that the return values of a group are not collected to be passed to
a linked callback signature.
Additionally, linking the task will *not* guarantee that it will activate only
when all group tasks have finished.
As an example, the following snippet using a simple `add(a, b)` task is faulty
since the linked `add.s()` signature will not receive the finalised group
result as one might expect.
.. code-block:: pycon
>>> g = group(add.s(2, 2), add.s(4, 4))
>>> g.link(add.s())
>>> res = g()
[4, 8]
Note that the finalised results of the first two tasks are returned, but the
callback signature will have run in the background and raised an exception
since it did not receive the two arguments it expects.
Group errbacks are passed down to encapsulated signatures as well which opens
the possibility for an errback linked only once to be called more than once if
multiple tasks in a group were to fail.
As an example, the following snippet using a `fail()` task which raises an
exception can be expected to invoke the `log_error()` signature once for each
failing task which gets run in the group.
.. code-block:: pycon
>>> g = group(fail.s(), fail.s())
>>> g.link_error(log_error.s())
>>> res = g()
With this in mind, it's generally advisable to create idempotent or counting
tasks which are tolerant to being called repeatedly for use as errbacks.
These use cases are better addressed by the :class:`~celery.chord` class which
is supported on certain backend implementations.
.. _group-results:
Group Results
~~~~~~~~~~~~~
The group task returns a special result too,
this result works just like normal task results, except
that it works on the group as a whole:
.. code-block:: pycon
>>> from celery import group
>>> from tasks import add
>>> job = group([
... add.s(2, 2),
... add.s(4, 4),
... add.s(8, 8),
... add.s(16, 16),
... add.s(32, 32),
... ])
>>> result = job.apply_async()
>>> result.ready() # have all subtasks completed?
True
>>> result.successful() # were all subtasks successful?
True
>>> result.get()
[4, 8, 16, 32, 64]
The :class:`~celery.result.GroupResult` takes a list of
:class:`~celery.result.AsyncResult` instances and operates on them as
if it was a single task.
It supports the following operations:
* :meth:`~celery.result.GroupResult.successful`
Return :const:`True` if all of the subtasks finished
successfully (e.g., didn't raise an exception).
* :meth:`~celery.result.GroupResult.failed`
Return :const:`True` if any of the subtasks failed.
* :meth:`~celery.result.GroupResult.waiting`
Return :const:`True` if any of the subtasks
isn't ready yet.
* :meth:`~celery.result.GroupResult.ready`
Return :const:`True` if all of the subtasks
are ready.
* :meth:`~celery.result.GroupResult.completed_count`
Return the number of completed subtasks. Note that `complete` means `successful` in
this context. In other words, the return value of this method is the number of
``successful`` tasks.
* :meth:`~celery.result.GroupResult.revoke`
Revoke all of the subtasks.
* :meth:`~celery.result.GroupResult.join`
Gather the results of all subtasks
and return them in the same order as they were called (as a list).
.. _group-unrolling:
Group Unrolling
~~~~~~~~~~~~~~~
A group with a single signature will be unrolled to a single signature when chained.
This means that the following group may pass either a list of results or a single result to the chain
depending on the number of items in the group.
.. code-block:: pycon
>>> from celery import chain, group
>>> from tasks import add
>>> chain(add.s(2, 2), group(add.s(1)), add.s(1))
add(2, 2) | add(1) | add(1)
>>> chain(add.s(2, 2), group(add.s(1), add.s(2)), add.s(1))
add(2, 2) | %add((add(1), add(2)), 1)
This means that you should be careful and make sure the ``add`` task can accept either a list or a single item as input
if you plan to use it as part of a larger canvas.
.. warning::
In Celery 4.x the following group below would not unroll into a chain due to a bug but instead the canvas would be
upgraded into a chord.
.. code-block:: pycon
>>> from celery import chain, group
>>> from tasks import add
>>> chain(group(add.s(1, 1)), add.s(2))
%add([add(1, 1)], 2)
In Celery 5.x this bug was fixed and the group is correctly unrolled into a single signature.
.. code-block:: pycon
>>> from celery import chain, group
>>> from tasks import add
>>> chain(group(add.s(1, 1)), add.s(2))
add(1, 1) | add(2)
.. _canvas-chord:
Chords
------
.. versionadded:: 2.3
.. note::
Tasks used within a chord must *not* ignore their results. If the result
backend is disabled for *any* task (header or body) in your chord you
should read ":ref:`chord-important-notes`". Chords are not currently
supported with the RPC result backend.
A chord is a task that only executes after all of the tasks in a group have
finished executing.
Let's calculate the sum of the expression
:math:`1 + 1 + 2 + 2 + 3 + 3 ... n + n` up to a hundred digits.
First you need two tasks, :func:`add` and :func:`tsum` (:func:`sum` is
already a standard function):
.. code-block:: python
@app.task
def add(x, y):
return x + y
@app.task
def tsum(numbers):
return sum(numbers)
Now you can use a chord to calculate each addition step in parallel, and then
get the sum of the resulting numbers:
.. code-block:: pycon
>>> from celery import chord
>>> from tasks import add, tsum
>>> chord(add.s(i, i)
... for i in range(100))(tsum.s()).get()
9900
This is obviously a very contrived example, the overhead of messaging and
synchronization makes this a lot slower than its Python counterpart:
.. code-block:: pycon
>>> sum(i + i for i in range(100))
The synchronization step is costly, so you should avoid using chords as much
as possible. Still, the chord is a powerful primitive to have in your toolbox
as synchronization is a required step for many parallel algorithms.
Let's break the chord expression down:
.. code-block:: pycon
>>> callback = tsum.s()
>>> header = [add.s(i, i) for i in range(100)]
>>> result = chord(header)(callback)
>>> result.get()
9900
Remember, the callback can only be executed after all of the tasks in the
header have returned. Each step in the header is executed as a task, in
parallel, possibly on different nodes. The callback is then applied with
the return value of each task in the header. The task id returned by
:meth:`chord` is the id of the callback, so you can wait for it to complete
and get the final return value (but remember to :ref:`never have a task wait
for other tasks <task-synchronous-subtasks>`)
.. _chord-errors:
Error handling
~~~~~~~~~~~~~~
So what happens if one of the tasks raises an exception?
The chord callback result will transition to the failure state, and the error is set
to the :exc:`~@ChordError` exception:
.. code-block:: pycon
>>> c = chord([add.s(4, 4), raising_task.s(), add.s(8, 8)])
>>> result = c()
>>> result.get()
.. code-block:: pytb
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "*/celery/result.py", line 120, in get
interval=interval)
File "*/celery/backends/amqp.py", line 150, in wait_for
raise meta['result']
celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a21c-d867c61fcb47
raised ValueError('something something',)
While the traceback may be different depending on the result backend used,
you can see that the error description includes the id of the task that failed
and a string representation of the original exception. You can also
find the original traceback in ``result.traceback``.
Note that the rest of the tasks will still execute, so the third task
(``add.s(8, 8)``) is still executed even though the middle task failed.
Also the :exc:`~@ChordError` only shows the task that failed
first (in time): it doesn't respect the ordering of the header group.
To perform an action when a chord fails you can therefore attach
an errback to the chord callback:
.. code-block:: python
@app.task
def on_chord_error(request, exc, traceback):
print('Task {0!r} raised error: {1!r}'.format(request.id, exc))
.. code-block:: pycon
>>> c = (group(add.s(i, i) for i in range(10)) |
... tsum.s().on_error(on_chord_error.s())).delay()
Chords may have callback and errback signatures linked to them, which addresses
some of the issues with linking signatures to groups.
Doing so will link the provided signature to the chord's body which can be
expected to gracefully invoke callbacks just once upon completion of the body,
or errbacks just once if any task in the chord header or body fails.
This behavior can be manipulated to allow error handling of the chord header using the :ref:`task_allow_error_cb_on_chord_header <task_allow_error_cb_on_chord_header>` flag.
Enabling this flag will cause the chord header to invoke the errback for the body (default behavior) *and* any task in the chord's header that fails.
.. _chord-important-notes:
Important Notes
~~~~~~~~~~~~~~~
Tasks used within a chord must *not* ignore their results. In practice this
means that you must enable a :const:`result_backend` in order to use
chords. Additionally, if :const:`task_ignore_result` is set to :const:`True`
in your configuration, be sure that the individual tasks to be used within
the chord are defined with :const:`ignore_result=False`. This applies to both
Task subclasses and decorated tasks.
Example Task subclass:
.. code-block:: python
class MyTask(Task):
ignore_result = False
Example decorated task:
.. code-block:: python
@app.task(ignore_result=False)
def another_task(project):
do_something()
By default the synchronization step is implemented by having a recurring task
poll the completion of the group every second, calling the signature when
ready.
Example implementation:
.. code-block:: python
from celery import maybe_signature
@app.task(bind=True)
def unlock_chord(self, group, callback, interval=1, max_retries=None):
if group.ready():
return maybe_signature(callback).delay(group.join())
raise self.retry(countdown=interval, max_retries=max_retries)
This is used by all result backends except Redis, Memcached and DynamoDB: they
increment a counter after each task in the header, then applies the callback
when the counter exceeds the number of tasks in the set.
The Redis, Memcached and DynamoDB approach is a much better solution, but not easily
implemented in other backends (suggestions welcome!).
.. note::
Chords don't properly work with Redis before version 2.2; you'll need to
upgrade to at least redis-server 2.2 to use them.
.. note::
If you're using chords with the Redis result backend and also overriding
the :meth:`Task.after_return` method, you need to make sure to call the
super method or else the chord callback won't be applied.
.. code-block:: python
def after_return(self, *args, **kwargs):
do_something()
super().after_return(*args, **kwargs)
.. _canvas-map:
Map & Starmap
-------------
:class:`~celery.map` and :class:`~celery.starmap` are built-in tasks
that call the provided calling task for every element in a sequence.
They differ from :class:`~celery.group` in that:
- only one task message is sent.
- the operation is sequential.
For example using ``map``:
.. code-block:: pycon
>>> from proj.tasks import add
>>> ~tsum.map([list(range(10)), list(range(100))])
[45, 4950]
is the same as having a task doing:
.. code-block:: python
@app.task
def temp():
return [tsum(range(10)), tsum(range(100))]
and using ``starmap``:
.. code-block:: pycon
>>> ~add.starmap(zip(range(10), range(10)))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
is the same as having a task doing:
.. code-block:: python
@app.task
def temp():
return [add(i, i) for i in range(10)]
Both ``map`` and ``starmap`` are signature objects, so they can be used as
other signatures and combined in groups etc., for example
to call the starmap after 10 seconds:
.. code-block:: pycon
>>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)
.. _canvas-chunks:
Chunks
------
Chunking lets you divide an iterable of work into pieces, so that if
you have one million objects, you can create 10 tasks with a hundred
thousand objects each.
Some may worry that chunking your tasks results in a degradation
of parallelism, but this is rarely true for a busy cluster
and in practice since you're avoiding the overhead of messaging
it may considerably increase performance.
To create a chunks' signature you can use :meth:`@Task.chunks`:
.. code-block:: pycon
>>> add.chunks(zip(range(100), range(100)), 10)
As with :class:`~celery.group` the act of sending the messages for
the chunks will happen in the current process when called:
.. code-block:: pycon
>>> from proj.tasks import add
>>> res = add.chunks(zip(range(100), range(100)), 10)()
>>> res.get()
[[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
[20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
[40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
[60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
[80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
[100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
[120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
[140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
[160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
[180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]
while calling ``.apply_async`` will create a dedicated
task so that the individual tasks are applied in a worker
instead:
.. code-block:: pycon
>>> add.chunks(zip(range(100), range(100)), 10).apply_async()
You can also convert chunks to a group:
.. code-block:: pycon
>>> group = add.chunks(zip(range(100), range(100)), 10).group()
and with the group skew the countdown of each task by increments
of one:
.. code-block:: pycon
>>> group.skew(start=1, stop=10)()
This means that the first task will have a countdown of one second, the second
task a countdown of two seconds, and so on.
.. _canvas-stamping:
Stamping
========
.. versionadded:: 5.3
The goal of the Stamping API is to give an ability to label
the signature and its components for debugging information purposes.
For example, when the canvas is a complex structure, it may be necessary to
label some or all elements of the formed structure. The complexity
increases even more when nested groups are rolled-out or chain
elements are replaced. In such cases, it may be necessary to
understand which group an element is a part of or on what nested
level it is. This requires a mechanism that traverses the canvas
elements and marks them with specific metadata. The stamping API
allows doing that based on the Visitor pattern.
For example,
.. code-block:: pycon
>>> sig1 = add.si(2, 2)
>>> sig1_res = sig1.freeze()
>>> g = group(sig1, add.si(3, 3))
>>> g.stamp(stamp='your_custom_stamp')
>>> res = g.apply_async()
>>> res.get(timeout=TIMEOUT)
[4, 6]
>>> sig1_res._get_task_meta()['stamp']
['your_custom_stamp']
will initialize a group ``g`` and mark its components with stamp ``your_custom_stamp``.
For this feature to be useful, you need to set the :setting:`result_extended`
configuration option to ``True`` or directive ``result_extended = True``.
Canvas stamping
----------------
We can also stamp the canvas with custom stamping logic, using the visitor class ``StampingVisitor``
as the base class for the custom stamping visitor.
Custom stamping
----------------
If more complex stamping logic is required, it is possible
to implement custom stamping behavior based on the Visitor
pattern. The class that implements this custom logic must
inherit ``StampingVisitor`` and implement appropriate methods.
For example, the following example ``InGroupVisitor`` will label
tasks that are in side of some group by label ``in_group``.
.. code-block:: python
class InGroupVisitor(StampingVisitor):
def __init__(self):
self.in_group = False
def on_group_start(self, group, **headers) -> dict:
self.in_group = True
return {"in_group": [self.in_group], "stamped_headers": ["in_group"]}
def on_group_end(self, group, **headers) -> None:
self.in_group = False
def on_chain_start(self, chain, **headers) -> dict:
return {"in_group": [self.in_group], "stamped_headers": ["in_group"]}
def on_signature(self, sig, **headers) -> dict:
return {"in_group": [self.in_group], "stamped_headers": ["in_group"]}
The following example shows another custom stamping visitor, which labels all
tasks with a custom ``monitoring_id`` which can represent a UUID value of an external monitoring system,
that can be used to track the task execution by including the id with such a visitor implementation.
This ``monitoring_id`` can be a randomly generated UUID, or a unique identifier of the span id used by
the external monitoring system, etc.
.. code-block:: python
class MonitoringIdStampingVisitor(StampingVisitor):
def on_signature(self, sig, **headers) -> dict:
return {'monitoring_id': uuid4().hex}
.. important::
The ``stamped_headers`` key in the dictionary returned by ``on_signature()`` (or any other visitor method) is **optional**:
.. code-block:: python
# Approach 1: Without stamped_headers - ALL keys are treated as stamps
def on_signature(self, sig, **headers) -> dict:
return {'monitoring_id': uuid4().hex} # monitoring_id becomes a stamp
# Approach 2: With stamped_headers - ONLY listed keys are stamps
def on_signature(self, sig, **headers) -> dict:
return {
'monitoring_id': uuid4().hex, # This will be a stamp
'other_data': 'value', # This will NOT be a stamp
'stamped_headers': ['monitoring_id'] # Only monitoring_id is stamped
}
If the ``stamped_headers`` key is not specified, the stamping visitor will assume all keys in the returned dictionary are stamped headers.
Next, let's see how to use the ``MonitoringIdStampingVisitor`` example stamping visitor.
.. code-block:: python
sig_example = signature('t1')
sig_example.stamp(visitor=MonitoringIdStampingVisitor())
group_example = group([signature('t1'), signature('t2')])
group_example.stamp(visitor=MonitoringIdStampingVisitor())
chord_example = chord([signature('t1'), signature('t2')], signature('t3'))
chord_example.stamp(visitor=MonitoringIdStampingVisitor())
chain_example = chain(signature('t1'), group(signature('t2'), signature('t3')), signature('t4'))
chain_example.stamp(visitor=MonitoringIdStampingVisitor())
Lastly, it's important to mention that each monitoring id stamp in the example above would be different from each other between tasks.
Callbacks stamping
------------------
The stamping API also supports stamping callbacks implicitly.
This means that when a callback is added to a task, the stamping
visitor will be applied to the callback as well.
.. warning::
The callback must be linked to the signature before stamping.
For example, let's examine the following custom stamping visitor that uses the
implicit approach where all returned dictionary keys are automatically treated as
stamped headers without explicitly specifying `stamped_headers`.
.. code-block:: python
class CustomStampingVisitor(StampingVisitor):
def on_signature(self, sig, **headers) -> dict:
# 'header' will automatically be treated as a stamped header
# without needing to specify 'stamped_headers': ['header']
return {'header': 'value'}
def on_callback(self, callback, **header) -> dict:
# 'on_callback' will automatically be treated as a stamped header
return {'on_callback': True}
def on_errback(self, errback, **header) -> dict:
# 'on_errback' will automatically be treated as a stamped header
return {'on_errback': True}
This custom stamping visitor will stamp the signature, callbacks, and errbacks with ``{'header': 'value'}``
and stamp the callbacks and errbacks with ``{'on_callback': True}`` and ``{'on_errback': True}`` respectively as shown below.
.. code-block:: python
c = chord([add.s(1, 1), add.s(2, 2)], xsum.s())
callback = signature('sig_link')
errback = signature('sig_link_error')
c.link(callback)
c.link_error(errback)
c.stamp(visitor=CustomStampingVisitor())
This example will result in the following stamps:
.. code-block:: python
>>> c.options
{'header': 'value', 'stamped_headers': ['header']}
>>> c.tasks.tasks[0].options
{'header': 'value', 'stamped_headers': ['header']}
>>> c.tasks.tasks[1].options
{'header': 'value', 'stamped_headers': ['header']}
>>> c.body.options
{'header': 'value', 'stamped_headers': ['header']}
>>> c.body.options['link'][0].options
{'header': 'value', 'on_callback': True, 'stamped_headers': ['header', 'on_callback']}
>>> c.body.options['link_error'][0].options
{'header': 'value', 'on_errback': True, 'stamped_headers': ['header', 'on_errback']}
|