1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
|
.. _guide-tasks:
=====================================================================
Tasks
=====================================================================
Tasks are the building blocks of Celery applications.
A task is a class that can be created out of any callable. It performs
dual roles in that it defines both what happens when a task is
called (sends a message), and what happens when a worker receives that message.
Every task class has a unique name, and this name is referenced in messages
so the worker can find the right function to execute.
A task message is not removed from the queue
until that message has been :term:`acknowledged` by a worker. A worker can reserve
many messages in advance and even if the worker is killed -- by power failure
or some other reason -- the message will be redelivered to another worker.
Ideally task functions should be :term:`idempotent`: meaning
the function won't cause unintended effects even if called
multiple times with the same arguments.
Since the worker cannot detect if your tasks are idempotent, the default
behavior is to acknowledge the message in advance, just before it's executed,
so that a task invocation that already started is never executed again.
If your task is idempotent you can set the :attr:`~Task.acks_late` option
to have the worker acknowledge the message *after* the task returns
instead. See also the FAQ entry :ref:`faq-acks_late-vs-retry`.
Note that the worker will acknowledge the message if the child process executing
the task is terminated (either by the task calling :func:`sys.exit`, or by signal)
even when :attr:`~Task.acks_late` is enabled. This behavior is intentional
as...
#. We don't want to rerun tasks that forces the kernel to send
a :sig:`SIGSEGV` (segmentation fault) or similar signals to the process.
#. We assume that a system administrator deliberately killing the task
does not want it to automatically restart.
#. A task that allocates too much memory is in danger of triggering the kernel
OOM killer, the same may happen again.
#. A task that always fails when redelivered may cause a high-frequency
message loop taking down the system.
If you really want a task to be redelivered in these scenarios you should
consider enabling the :setting:`task_reject_on_worker_lost` setting.
.. warning::
A task that blocks indefinitely may eventually stop the worker instance
from doing any other work.
If your task does I/O then make sure you add timeouts to these operations,
like adding a timeout to a web request using the :pypi:`requests` library:
.. code-block:: python
connect_timeout, read_timeout = 5.0, 30.0
response = requests.get(URL, timeout=(connect_timeout, read_timeout))
:ref:`Time limits <worker-time-limits>` are convenient for making sure all
tasks return in a timely manner, but a time limit event will actually kill
the process by force so only use them to detect cases where you haven't
used manual timeouts yet.
In previous versions, the default prefork pool scheduler was not friendly
to long-running tasks, so if you had tasks that ran for minutes/hours, it
was advised to enable the :option:`-Ofair <celery worker -O>` command-line
argument to the :program:`celery worker`. However, as of version 4.0,
-Ofair is now the default scheduling strategy. See :ref:`optimizing-prefetch-limit`
for more information, and for the best performance route long-running and
short-running tasks to dedicated workers (:ref:`routing-automatic`).
If your worker hangs then please investigate what tasks are running
before submitting an issue, as most likely the hanging is caused
by one or more tasks hanging on a network operation.
--
In this chapter you'll learn all about defining tasks,
and this is the **table of contents**:
.. contents::
:local:
:depth: 1
.. _task-basics:
Basics
======
You can easily create a task from any callable by using
the :meth:`@task` decorator:
.. code-block:: python
from .models import User
@app.task
def create_user(username, password):
User.objects.create(username=username, password=password)
There are also many :ref:`options <task-options>` that can be set for the task,
these can be specified as arguments to the decorator:
.. code-block:: python
@app.task(serializer='json')
def create_user(username, password):
User.objects.create(username=username, password=password)
How do I import the task decorator?
-----------------------------------
The task decorator is available on your :class:`@Celery` application instance,
if you don't know what this is then please read :ref:`first-steps`.
If you're using Django (see :ref:`django-first-steps`), or you're the author
of a library then you probably want to use the :func:`@shared_task` decorator:
.. code-block:: python
from celery import shared_task
@shared_task
def add(x, y):
return x + y
Multiple decorators
-------------------
When using multiple decorators in combination with the task
decorator you must make sure that the `task`
decorator is applied last (oddly, in Python this means it must
be first in the list):
.. code-block:: python
@app.task
@decorator2
@decorator1
def add(x, y):
return x + y
Bound tasks
-----------
A task being bound means the first argument to the task will always
be the task instance (``self``), just like Python bound methods:
.. code-block:: python
logger = get_task_logger(__name__)
@app.task(bind=True)
def add(self, x, y):
logger.info(self.request.id)
Bound tasks are needed for retries (using :meth:`Task.retry() <@Task.retry>`),
for accessing information about the current task request, and for any
additional functionality you add to custom task base classes.
Task inheritance
----------------
The ``base`` argument to the task decorator specifies the base class of the task:
.. code-block:: python
import celery
class MyTask(celery.Task):
def on_failure(self, exc, task_id, args, kwargs, einfo):
print('{0!r} failed: {1!r}'.format(task_id, exc))
@app.task(base=MyTask)
def add(x, y):
raise KeyError()
.. _task-names:
Names
=====
Every task must have a unique name.
If no explicit name is provided the task decorator will generate one for you,
and this name will be based on 1) the module the task is defined in, and 2)
the name of the task function.
Example setting explicit name:
.. code-block:: pycon
>>> @app.task(name='sum-of-two-numbers')
>>> def add(x, y):
... return x + y
>>> add.name
'sum-of-two-numbers'
A best practice is to use the module name as a name-space,
this way names won't collide if there's already a task with that name
defined in another module.
.. code-block:: pycon
>>> @app.task(name='tasks.add')
>>> def add(x, y):
... return x + y
You can tell the name of the task by investigating its ``.name`` attribute:
.. code-block:: pycon
>>> add.name
'tasks.add'
The name we specified here (``tasks.add``) is exactly the name that would've
been automatically generated for us if the task was defined in a module
named :file:`tasks.py`:
:file:`tasks.py`:
.. code-block:: python
@app.task
def add(x, y):
return x + y
.. code-block:: pycon
>>> from tasks import add
>>> add.name
'tasks.add'
.. note::
You can use the `inspect` command in a worker to view the names of
all registered tasks. See the `inspect registered` command in the
:ref:`monitoring-control` section of the User Guide.
.. _task-name-generator-info:
Changing the automatic naming behavior
--------------------------------------
.. versionadded:: 4.0
There are some cases when the default automatic naming isn't suitable.
Consider having many tasks within many different modules::
project/
/__init__.py
/celery.py
/moduleA/
/__init__.py
/tasks.py
/moduleB/
/__init__.py
/tasks.py
Using the default automatic naming, each task will have a generated name
like `moduleA.tasks.taskA`, `moduleA.tasks.taskB`, `moduleB.tasks.test`,
and so on. You may want to get rid of having `tasks` in all task names.
As pointed above, you can explicitly give names for all tasks, or you
can change the automatic naming behavior by overriding
:meth:`@gen_task_name`. Continuing with the example, `celery.py`
may contain:
.. code-block:: python
from celery import Celery
class MyCelery(Celery):
def gen_task_name(self, name, module):
if module.endswith('.tasks'):
module = module[:-6]
return super().gen_task_name(name, module)
app = MyCelery('main')
So each task will have a name like `moduleA.taskA`, `moduleA.taskB` and
`moduleB.test`.
.. warning::
Make sure that your :meth:`@gen_task_name` is a pure function: meaning
that for the same input it must always return the same output.
.. _task-request-info:
Task Request
============
:attr:`Task.request <@Task.request>` contains information and state
related to the currently executing task.
The request defines the following attributes:
:id: The unique id of the executing task.
:group: The unique id of the task's :ref:`group <canvas-group>`, if this task is a member.
:chord: The unique id of the chord this task belongs to (if the task
is part of the header).
:correlation_id: Custom ID used for things like de-duplication.
:args: Positional arguments.
:kwargs: Keyword arguments.
:origin: Name of host that sent this task.
:retries: How many times the current task has been retried.
An integer starting at `0`.
:is_eager: Set to :const:`True` if the task is executed locally in
the client, not by a worker.
:eta: The original ETA of the task (if any).
This is in UTC time (depending on the :setting:`enable_utc`
setting).
:expires: The original expiry time of the task (if any).
This is in UTC time (depending on the :setting:`enable_utc`
setting).
:hostname: Node name of the worker instance executing the task.
:delivery_info: Additional message delivery information. This is a mapping
containing the exchange and routing key used to deliver this
task. Used by for example :meth:`Task.retry() <@Task.retry>`
to resend the task to the same destination queue.
Availability of keys in this dict depends on the
message broker used.
:reply-to: Name of queue to send replies back to (used with RPC result
backend for example).
:called_directly: This flag is set to true if the task wasn't
executed by the worker.
:timelimit: A tuple of the current ``(soft, hard)`` time limits active for
this task (if any).
:callbacks: A list of signatures to be called if this task returns successfully.
:errbacks: A list of signatures to be called if this task fails.
:utc: Set to true the caller has UTC enabled (:setting:`enable_utc`).
.. versionadded:: 3.1
:headers: Mapping of message headers sent with this task message
(may be :const:`None`).
:reply_to: Where to send reply to (queue name).
:correlation_id: Usually the same as the task id, often used in amqp
to keep track of what a reply is for.
.. versionadded:: 4.0
:root_id: The unique id of the first task in the workflow this task
is part of (if any).
:parent_id: The unique id of the task that called this task (if any).
:chain: Reversed list of tasks that form a chain (if any).
The last item in this list will be the next task to succeed the
current task. If using version one of the task protocol the chain
tasks will be in ``request.callbacks`` instead.
.. versionadded:: 5.2
:properties: Mapping of message properties received with this task message
(may be :const:`None` or :const:`{}`)
:replaced_task_nesting: How many times the task was replaced, if at all.
(may be :const:`0`)
Example
-------
An example task accessing information in the context is:
.. code-block:: python
@app.task(bind=True)
def dump_context(self, x, y):
print('Executing task id {0.id}, args: {0.args!r} kwargs: {0.kwargs!r}'.format(
self.request))
The ``bind`` argument means that the function will be a "bound method" so
that you can access attributes and methods on the task type instance.
.. _task-logging:
Logging
=======
The worker will automatically set up logging for you, or you can
configure logging manually.
A special logger is available named "celery.task", you can inherit
from this logger to automatically get the task name and unique id as part
of the logs.
The best practice is to create a common logger
for all of your tasks at the top of your module:
.. code-block:: python
from celery.utils.log import get_task_logger
logger = get_task_logger(__name__)
@app.task
def add(x, y):
logger.info('Adding {0} + {1}'.format(x, y))
return x + y
Celery uses the standard Python logger library,
and the documentation can be found :mod:`here <logging>`.
You can also use :func:`print`, as anything written to standard
out/-err will be redirected to the logging system (you can disable this,
see :setting:`worker_redirect_stdouts`).
.. note::
The worker won't update the redirection if you create a logger instance
somewhere in your task or task module.
If you want to redirect ``sys.stdout`` and ``sys.stderr`` to a custom
logger you have to enable this manually, for example:
.. code-block:: python
import sys
logger = get_task_logger(__name__)
@app.task(bind=True)
def add(self, x, y):
old_outs = sys.stdout, sys.stderr
rlevel = self.app.conf.worker_redirect_stdouts_level
try:
self.app.log.redirect_stdouts_to_logger(logger, rlevel)
print('Adding {0} + {1}'.format(x, y))
return x + y
finally:
sys.stdout, sys.stderr = old_outs
.. note::
If a specific Celery logger you need is not emitting logs, you should
check that the logger is propagating properly. In this example
"celery.app.trace" is enabled so that "succeeded in" logs are emitted:
.. code-block:: python
import celery
import logging
@celery.signals.after_setup_logger.connect
def on_after_setup_logger(**kwargs):
logger = logging.getLogger('celery')
logger.propagate = True
logger = logging.getLogger('celery.app.trace')
logger.propagate = True
.. note::
If you want to completely disable Celery logging configuration,
use the :signal:`setup_logging` signal:
.. code-block:: python
import celery
@celery.signals.setup_logging.connect
def on_setup_logging(**kwargs):
pass
.. _task-argument-checking:
Argument checking
-----------------
.. versionadded:: 4.0
Celery will verify the arguments passed when you call the task, just
like Python does when calling a normal function:
.. code-block:: pycon
>>> @app.task
... def add(x, y):
... return x + y
# Calling the task with two arguments works:
>>> add.delay(8, 8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>
# Calling the task with only one argument fails:
>>> add.delay(8)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "celery/app/task.py", line 376, in delay
return self.apply_async(args, kwargs)
File "celery/app/task.py", line 485, in apply_async
check_arguments(*(args or ()), **(kwargs or {}))
TypeError: add() takes exactly 2 arguments (1 given)
You can disable the argument checking for any task by setting its
:attr:`~@Task.typing` attribute to :const:`False`:
.. code-block:: pycon
>>> @app.task(typing=False)
... def add(x, y):
... return x + y
# Works locally, but the worker receiving the task will raise an error.
>>> add.delay(8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>
.. _task-hiding-sensitive-information:
Hiding sensitive information in arguments
-----------------------------------------
.. versionadded:: 4.0
When using :setting:`task_protocol` 2 or higher (default since 4.0), you can
override how positional arguments and keyword arguments are represented in logs
and monitoring events using the ``argsrepr`` and ``kwargsrepr`` calling
arguments:
.. code-block:: pycon
>>> add.apply_async((2, 3), argsrepr='(<secret-x>, <secret-y>)')
>>> charge.s(account, card='1234 5678 1234 5678').set(
... kwargsrepr=repr({'card': '**** **** **** 5678'})
... ).delay()
.. warning::
Sensitive information will still be accessible to anyone able
to read your task message from the broker, or otherwise able intercept it.
For this reason you should probably encrypt your message if it contains
sensitive information, or in this example with a credit card number
the actual number could be stored encrypted in a secure store that you retrieve
and decrypt in the task itself.
.. _task-retry:
Retrying
========
:meth:`Task.retry() <@Task.retry>` can be used to re-execute the task,
for example in the event of recoverable errors.
When you call ``retry`` it'll send a new message, using the same
task-id, and it'll take care to make sure the message is delivered
to the same queue as the originating task.
When a task is retried this is also recorded as a task state,
so that you can track the progress of the task using the result
instance (see :ref:`task-states`).
Here's an example using ``retry``:
.. code-block:: python
@app.task(bind=True)
def send_twitter_status(self, oauth, tweet):
try:
twitter = Twitter(oauth)
twitter.update_status(tweet)
except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
raise self.retry(exc=exc)
.. note::
The :meth:`Task.retry() <@Task.retry>` call will raise an exception so any
code after the retry won't be reached. This is the :exc:`~@Retry`
exception, it isn't handled as an error but rather as a semi-predicate
to signify to the worker that the task is to be retried,
so that it can store the correct state when a result backend is enabled.
This is normal operation and always happens unless the
``throw`` argument to retry is set to :const:`False`.
The bind argument to the task decorator will give access to ``self`` (the
task type instance).
The ``exc`` argument is used to pass exception information that's
used in logs, and when storing task results.
Both the exception and the traceback will
be available in the task state (if a result backend is enabled).
If the task has a ``max_retries`` value the current exception
will be re-raised if the max number of retries has been exceeded,
but this won't happen if:
- An ``exc`` argument wasn't given.
In this case the :exc:`~@MaxRetriesExceededError`
exception will be raised.
- There's no current exception
If there's no original exception to re-raise the ``exc``
argument will be used instead, so:
.. code-block:: python
self.retry(exc=Twitter.LoginError())
will raise the ``exc`` argument given.
.. _task-retry-custom-delay:
Using a custom retry delay
--------------------------
When a task is to be retried, it can wait for a given amount of time
before doing so, and the default delay is defined by the
:attr:`~@Task.default_retry_delay`
attribute. By default this is set to 3 minutes. Note that the
unit for setting the delay is in seconds (int or float).
You can also provide the `countdown` argument to :meth:`~@Task.retry` to
override this default.
.. code-block:: python
@app.task(bind=True, default_retry_delay=30 * 60) # retry in 30 minutes.
def add(self, x, y):
try:
something_raising()
except Exception as exc:
# overrides the default delay to retry after 1 minute
raise self.retry(exc=exc, countdown=60)
.. _task-autoretry:
Automatic retry for known exceptions
------------------------------------
.. versionadded:: 4.0
Sometimes you just want to retry a task whenever a particular exception
is raised.
Fortunately, you can tell Celery to automatically retry a task using
`autoretry_for` argument in the :meth:`@task` decorator:
.. code-block:: python
from twitter.exceptions import FailWhaleError
@app.task(autoretry_for=(FailWhaleError,))
def refresh_timeline(user):
return twitter.refresh_timeline(user)
If you want to specify custom arguments for an internal :meth:`~@Task.retry`
call, pass `retry_kwargs` argument to :meth:`@task` decorator:
.. code-block:: python
@app.task(autoretry_for=(FailWhaleError,),
retry_kwargs={'max_retries': 5})
def refresh_timeline(user):
return twitter.refresh_timeline(user)
This is provided as an alternative to manually handling the exceptions,
and the example above will do the same as wrapping the task body
in a :keyword:`try` ... :keyword:`except` statement:
.. code-block:: python
@app.task
def refresh_timeline(user):
try:
twitter.refresh_timeline(user)
except FailWhaleError as exc:
raise refresh_timeline.retry(exc=exc, max_retries=5)
If you want to automatically retry on any error, simply use:
.. code-block:: python
@app.task(autoretry_for=(Exception,))
def x():
...
.. versionadded:: 4.2
If your tasks depend on another service, like making a request to an API,
then it's a good idea to use `exponential backoff`_ to avoid overwhelming the
service with your requests. Fortunately, Celery's automatic retry support
makes it easy. Just specify the :attr:`~Task.retry_backoff` argument, like this:
.. code-block:: python
from requests.exceptions import RequestException
@app.task(autoretry_for=(RequestException,), retry_backoff=True)
def x():
...
By default, this exponential backoff will also introduce random jitter_ to
avoid having all the tasks run at the same moment. It will also cap the
maximum backoff delay to 10 minutes. All these settings can be customized
via options documented below.
.. versionadded:: 4.4
You can also set `autoretry_for`, `max_retries`, `retry_backoff`, `retry_backoff_max` and `retry_jitter` options in class-based tasks:
.. code-block:: python
class BaseTaskWithRetry(Task):
autoretry_for = (TypeError,)
max_retries = 5
retry_backoff = True
retry_backoff_max = 700
retry_jitter = False
.. attribute:: Task.autoretry_for
A list/tuple of exception classes. If any of these exceptions are raised
during the execution of the task, the task will automatically be retried.
By default, no exceptions will be autoretried.
.. attribute:: Task.max_retries
A number. Maximum number of retries before giving up. A value of ``None``
means task will retry forever. By default, this option is set to ``3``.
.. attribute:: Task.retry_backoff
A boolean, or a number. If this option is set to ``True``, autoretries
will be delayed following the rules of `exponential backoff`_. The first
retry will have a delay of 1 second, the second retry will have a delay
of 2 seconds, the third will delay 4 seconds, the fourth will delay 8
seconds, and so on. (However, this delay value is modified by
:attr:`~Task.retry_jitter`, if it is enabled.)
If this option is set to a number, it is used as a
delay factor. For example, if this option is set to ``3``, the first retry
will delay 3 seconds, the second will delay 6 seconds, the third will
delay 12 seconds, the fourth will delay 24 seconds, and so on. By default,
this option is set to ``False``, and autoretries will not be delayed.
.. attribute:: Task.retry_backoff_max
A number. If ``retry_backoff`` is enabled, this option will set a maximum
delay in seconds between task autoretries. By default, this option is set to ``600``,
which is 10 minutes.
.. attribute:: Task.retry_jitter
A boolean. `Jitter`_ is used to introduce randomness into
exponential backoff delays, to prevent all tasks in the queue from being
executed simultaneously. If this option is set to ``True``, the delay
value calculated by :attr:`~Task.retry_backoff` is treated as a maximum,
and the actual delay value will be a random number between zero and that
maximum. By default, this option is set to ``True``.
.. versionadded:: 5.3.0
.. attribute:: Task.dont_autoretry_for
A list/tuple of exception classes. These exceptions won't be autoretried.
This allows to exclude some exceptions that match `autoretry_for
<Task.autoretry_for>`:attr: but for which you don't want a retry.
.. _task-pydantic:
Argument validation with Pydantic
=================================
.. versionadded:: 5.5.0
You can use Pydantic_ to validate and convert arguments as well as serializing
results based on typehints by passing ``pydantic=True``.
.. NOTE::
Argument validation only covers arguments/return values on the task side. You still have
serialize arguments yourself when invoking a task with ``delay()`` or ``apply_async()``.
For example:
.. code-block:: python
from pydantic import BaseModel
class ArgModel(BaseModel):
value: int
class ReturnModel(BaseModel):
value: str
@app.task(pydantic=True)
def x(arg: ArgModel) -> ReturnModel:
# args/kwargs type hinted as Pydantic model will be converted
assert isinstance(arg, ArgModel)
# The returned model will be converted to a dict automatically
return ReturnModel(value=f"example: {arg.value}")
The task can then be called using a dict matching the model, and you'll receive
the returned model "dumped" (serialized using ``BaseModel.model_dump()``):
.. code-block:: python
>>> result = x.delay({'value': 1})
>>> result.get(timeout=1)
{'value': 'example: 1'}
Union types, arguments to generics
----------------------------------
Union types (e.g. ``Union[SomeModel, OtherModel]``) or arguments to generics (e.g.
``list[SomeModel]``) are **not** supported.
In case you want to support a list or similar types, it is recommended to use
``pydantic.RootModel``.
Optional parameters/return values
---------------------------------
Optional parameters or return values are also handled properly. For example, given this task:
.. code-block:: python
from typing import Optional
# models are the same as above
@app.task(pydantic=True)
def x(arg: Optional[ArgModel] = None) -> Optional[ReturnModel]:
if arg is None:
return None
return ReturnModel(value=f"example: {arg.value}")
You'll get the following behavior:
.. code-block:: python
>>> result = x.delay()
>>> result.get(timeout=1) is None
True
>>> result = x.delay({'value': 1})
>>> result.get(timeout=1)
{'value': 'example: 1'}
Return value handling
---------------------
Return values will only be serialized if the returned model matches the annotation. If you pass a
model instance of a different type, it will *not* be serialized. ``mypy`` should already catch such
errors and you should fix your typehints then.
Pydantic parameters
-------------------
There are a few more options influencing Pydantic behavior:
.. attribute:: Task.pydantic_strict
By default, `strict mode <https://docs.pydantic.dev/dev/concepts/strict_mode/>`_
is disabled. You can pass ``True`` to enable strict model validation.
.. attribute:: Task.pydantic_context
Pass `additional validation context
<https://docs.pydantic.dev/dev/concepts/validators/#validation-context>`_ during
Pydantic model validation. The context already includes the application object as
``celery_app`` and the task name as ``celery_task_name`` by default.
.. attribute:: Task.pydantic_dump_kwargs
When serializing a result, pass these additional arguments to ``dump_kwargs()``.
By default, only ``mode='json'`` is passed.
.. _task-options:
List of Options
===============
The task decorator can take a number of options that change the way
the task behaves, for example you can set the rate limit for a task
using the :attr:`rate_limit` option.
Any keyword argument passed to the task decorator will actually be set
as an attribute of the resulting task class, and this is a list
of the built-in attributes.
General
-------
.. _task-general-options:
.. attribute:: Task.name
The name the task is registered as.
You can set this name manually, or a name will be
automatically generated using the module and class name.
See also :ref:`task-names`.
.. attribute:: Task.request
If the task is being executed this will contain information
about the current request. Thread local storage is used.
See :ref:`task-request-info`.
.. attribute:: Task.max_retries
Only applies if the task calls ``self.retry`` or if the task is decorated
with the :ref:`autoretry_for <task-autoretry>` argument.
The maximum number of attempted retries before giving up.
If the number of retries exceeds this value a :exc:`~@MaxRetriesExceededError`
exception will be raised.
.. note::
You have to call :meth:`~@Task.retry`
manually, as it won't automatically retry on exception..
The default is ``3``.
A value of :const:`None` will disable the retry limit and the
task will retry forever until it succeeds.
.. attribute:: Task.throws
Optional tuple of expected error classes that shouldn't be regarded
as an actual error.
Errors in this list will be reported as a failure to the result backend,
but the worker won't log the event as an error, and no traceback will
be included.
Example:
.. code-block:: python
@task(throws=(KeyError, HttpNotFound)):
def get_foo():
something()
Error types:
- Expected errors (in ``Task.throws``)
Logged with severity ``INFO``, traceback excluded.
- Unexpected errors
Logged with severity ``ERROR``, with traceback included.
.. attribute:: Task.default_retry_delay
Default time in seconds before a retry of the task
should be executed. Can be either :class:`int` or :class:`float`.
Default is a three minute delay.
.. attribute:: Task.rate_limit
Set the rate limit for this task type (limits the number of tasks
that can be run in a given time frame). Tasks will still complete when
a rate limit is in effect, but it may take some time before it's allowed to
start.
If this is :const:`None` no rate limit is in effect.
If it is an integer or float, it is interpreted as "tasks per second".
The rate limits can be specified in seconds, minutes or hours
by appending `"/s"`, `"/m"` or `"/h"` to the value. Tasks will be evenly
distributed over the specified time frame.
Example: `"100/m"` (hundred tasks a minute). This will enforce a minimum
delay of 600ms between starting two tasks on the same worker instance.
Default is the :setting:`task_default_rate_limit` setting:
if not specified means rate limiting for tasks is disabled by default.
Note that this is a *per worker instance* rate limit, and not a global
rate limit. To enforce a global rate limit (e.g., for an API with a
maximum number of requests per second), you must restrict to a given
queue.
.. attribute:: Task.time_limit
The hard time limit, in seconds, for this task.
When not set the workers default is used.
.. attribute:: Task.soft_time_limit
The soft time limit for this task.
When not set the workers default is used.
.. attribute:: Task.ignore_result
Don't store task state. Note that this means you can't use
:class:`~celery.result.AsyncResult` to check if the task is ready,
or get its return value.
Note: Certain features will not work if task results are disabled.
For more details check the Canvas documentation.
.. attribute:: Task.store_errors_even_if_ignored
If :const:`True`, errors will be stored even if the task is configured
to ignore results.
.. attribute:: Task.serializer
A string identifying the default serialization
method to use. Defaults to the :setting:`task_serializer`
setting. Can be `pickle`, `json`, `yaml`, or any custom
serialization methods that have been registered with
:mod:`kombu.serialization.registry`.
Please see :ref:`calling-serializers` for more information.
.. attribute:: Task.compression
A string identifying the default compression scheme to use.
Defaults to the :setting:`task_compression` setting.
Can be `gzip`, or `bzip2`, or any custom compression schemes
that have been registered with the :mod:`kombu.compression` registry.
Please see :ref:`calling-compression` for more information.
.. attribute:: Task.backend
The result store backend to use for this task. An instance of one of the
backend classes in `celery.backends`. Defaults to `app.backend`,
defined by the :setting:`result_backend` setting.
.. attribute:: Task.acks_late
If set to :const:`True` messages for this task will be acknowledged
**after** the task has been executed, not *just before* (the default
behavior).
Note: This means the task may be executed multiple times should the worker
crash in the middle of execution. Make sure your tasks are
:term:`idempotent`.
The global default can be overridden by the :setting:`task_acks_late`
setting.
.. _task-track-started:
.. attribute:: Task.track_started
If :const:`True` the task will report its status as "started"
when the task is executed by a worker.
The default value is :const:`False` as the normal behavior is to not
report that level of granularity. Tasks are either pending, finished,
or waiting to be retried. Having a "started" status can be useful for
when there are long running tasks and there's a need to report what
task is currently running.
The host name and process id of the worker executing the task
will be available in the state meta-data (e.g., `result.info['pid']`)
The global default can be overridden by the
:setting:`task_track_started` setting.
.. seealso::
The API reference for :class:`~@Task`.
.. _task-states:
States
======
Celery can keep track of the tasks current state. The state also contains the
result of a successful task, or the exception and traceback information of a
failed task.
There are several *result backends* to choose from, and they all have
different strengths and weaknesses (see :ref:`task-result-backends`).
During its lifetime a task will transition through several possible states,
and each state may have arbitrary meta-data attached to it. When a task
moves into a new state the previous state is
forgotten about, but some transitions can be deduced, (e.g., a task now
in the :state:`FAILED` state, is implied to have been in the
:state:`STARTED` state at some point).
There are also sets of states, like the set of
:state:`FAILURE_STATES`, and the set of :state:`READY_STATES`.
The client uses the membership of these sets to decide whether
the exception should be re-raised (:state:`PROPAGATE_STATES`), or whether
the state can be cached (it can if the task is ready).
You can also define :ref:`custom-states`.
.. _task-result-backends:
Result Backends
---------------
If you want to keep track of tasks or need the return values, then Celery
must store or send the states somewhere so that they can be retrieved later.
There are several built-in result backends to choose from: SQLAlchemy/Django ORM,
Memcached, RabbitMQ/QPid (``rpc``), and Redis -- or you can define your own.
No backend works well for every use case.
You should read about the strengths and weaknesses of each backend, and choose
the most appropriate for your needs.
.. warning::
Backends use resources to store and transmit results. To ensure
that resources are released, you must eventually call
:meth:`~@AsyncResult.get` or :meth:`~@AsyncResult.forget` on
EVERY :class:`~@AsyncResult` instance returned after calling
a task.
.. seealso::
:ref:`conf-result-backend`
RPC Result Backend (RabbitMQ/QPid)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RPC result backend (`rpc://`) is special as it doesn't actually *store*
the states, but rather sends them as messages. This is an important difference as it
means that a result *can only be retrieved once*, and *only by the client
that initiated the task*. Two different processes can't wait for the same result.
Even with that limitation, it is an excellent choice if you need to receive
state changes in real-time. Using messaging means the client doesn't have to
poll for new states.
The messages are transient (non-persistent) by default, so the results will
disappear if the broker restarts. You can configure the result backend to send
persistent messages using the :setting:`result_persistent` setting.
Database Result Backend
~~~~~~~~~~~~~~~~~~~~~~~
Keeping state in the database can be convenient for many, especially for
web applications with a database already in place, but it also comes with
limitations.
* Polling the database for new states is expensive, and so you should
increase the polling intervals of operations, such as `result.get()`.
* Some databases use a default transaction isolation level that
isn't suitable for polling tables for changes.
In MySQL the default transaction isolation level is `REPEATABLE-READ`:
meaning the transaction won't see changes made by other transactions until
the current transaction is committed.
Changing that to the `READ-COMMITTED` isolation level is recommended.
.. _task-builtin-states:
Built-in States
---------------
.. state:: PENDING
PENDING
~~~~~~~
Task is waiting for execution or unknown.
Any task id that's not known is implied to be in the pending state.
.. state:: STARTED
STARTED
~~~~~~~
Task has been started.
Not reported by default, to enable please see :attr:`@Task.track_started`.
:meta-data: `pid` and `hostname` of the worker process executing
the task.
.. state:: SUCCESS
SUCCESS
~~~~~~~
Task has been successfully executed.
:meta-data: `result` contains the return value of the task.
:propagates: Yes
:ready: Yes
.. state:: FAILURE
FAILURE
~~~~~~~
Task execution resulted in failure.
:meta-data: `result` contains the exception occurred, and `traceback`
contains the backtrace of the stack at the point when the
exception was raised.
:propagates: Yes
.. state:: RETRY
RETRY
~~~~~
Task is being retried.
:meta-data: `result` contains the exception that caused the retry,
and `traceback` contains the backtrace of the stack at the point
when the exceptions was raised.
:propagates: No
.. state:: REVOKED
REVOKED
~~~~~~~
Task has been revoked.
:propagates: Yes
.. _custom-states:
Custom states
-------------
You can easily define your own states, all you need is a unique name.
The name of the state is usually an uppercase string. As an example
you could have a look at the :mod:`abortable tasks <~celery.contrib.abortable>`
which defines a custom :state:`ABORTED` state.
Use :meth:`~@Task.update_state` to update a task's state:.
.. code-block:: python
@app.task(bind=True)
def upload_files(self, filenames):
for i, file in enumerate(filenames):
if not self.request.called_directly:
self.update_state(state='PROGRESS',
meta={'current': i, 'total': len(filenames)})
Here I created the state `"PROGRESS"`, telling any application
aware of this state that the task is currently in progress, and also where
it is in the process by having `current` and `total` counts as part of the
state meta-data. This can then be used to create progress bars for example.
.. _pickling_exceptions:
Creating pickleable exceptions
------------------------------
A rarely known Python fact is that exceptions must conform to some
simple rules to support being serialized by the pickle module.
Tasks that raise exceptions that aren't pickleable won't work
properly when Pickle is used as the serializer.
To make sure that your exceptions are pickleable the exception
*MUST* provide the original arguments it was instantiated
with in its ``.args`` attribute. The simplest way
to ensure this is to have the exception call ``Exception.__init__``.
Let's look at some examples that work, and one that doesn't:
.. code-block:: python
# OK:
class HttpError(Exception):
pass
# BAD:
class HttpError(Exception):
def __init__(self, status_code):
self.status_code = status_code
# OK:
class HttpError(Exception):
def __init__(self, status_code):
self.status_code = status_code
Exception.__init__(self, status_code) # <-- REQUIRED
So the rule is:
For any exception that supports custom arguments ``*args``,
``Exception.__init__(self, *args)`` must be used.
There's no special support for *keyword arguments*, so if you
want to preserve keyword arguments when the exception is unpickled
you have to pass them as regular args:
.. code-block:: python
class HttpError(Exception):
def __init__(self, status_code, headers=None, body=None):
self.status_code = status_code
self.headers = headers
self.body = body
super(HttpError, self).__init__(status_code, headers, body)
.. _task-semipredicates:
Semipredicates
==============
The worker wraps the task in a tracing function that records the final
state of the task. There are a number of exceptions that can be used to
signal this function to change how it treats the return of the task.
.. _task-semipred-ignore:
Ignore
------
The task may raise :exc:`~@Ignore` to force the worker to ignore the
task. This means that no state will be recorded for the task, but the
message is still acknowledged (removed from queue).
This can be used if you want to implement custom revoke-like
functionality, or manually store the result of a task.
Example keeping revoked tasks in a Redis set:
.. code-block:: python
from celery.exceptions import Ignore
@app.task(bind=True)
def some_task(self):
if redis.ismember('tasks.revoked', self.request.id):
raise Ignore()
Example that stores results manually:
.. code-block:: python
from celery import states
from celery.exceptions import Ignore
@app.task(bind=True)
def get_tweets(self, user):
timeline = twitter.get_timeline(user)
if not self.request.called_directly:
self.update_state(state=states.SUCCESS, meta=timeline)
raise Ignore()
.. _task-semipred-reject:
Reject
------
The task may raise :exc:`~@Reject` to reject the task message using
AMQPs ``basic_reject`` method. This won't have any effect unless
:attr:`Task.acks_late` is enabled.
Rejecting a message has the same effect as acking it, but some
brokers may implement additional functionality that can be used.
For example RabbitMQ supports the concept of `Dead Letter Exchanges`_
where a queue can be configured to use a dead letter exchange that rejected
messages are redelivered to.
.. _`Dead Letter Exchanges`: http://www.rabbitmq.com/dlx.html
Reject can also be used to re-queue messages, but please be very careful
when using this as it can easily result in an infinite message loop.
Example using reject when a task causes an out of memory condition:
.. code-block:: python
import errno
from celery.exceptions import Reject
@app.task(bind=True, acks_late=True)
def render_scene(self, path):
file = get_file(path)
try:
renderer.render_scene(file)
# if the file is too big to fit in memory
# we reject it so that it's redelivered to the dead letter exchange
# and we can manually inspect the situation.
except MemoryError as exc:
raise Reject(exc, requeue=False)
except OSError as exc:
if exc.errno == errno.ENOMEM:
raise Reject(exc, requeue=False)
# For any other error we retry after 10 seconds.
except Exception as exc:
raise self.retry(exc, countdown=10)
Example re-queuing the message:
.. code-block:: python
from celery.exceptions import Reject
@app.task(bind=True, acks_late=True)
def requeues(self):
if not self.request.delivery_info['redelivered']:
raise Reject('no reason', requeue=True)
print('received two times')
Consult your broker documentation for more details about the ``basic_reject``
method.
.. _task-semipred-retry:
Retry
-----
The :exc:`~@Retry` exception is raised by the ``Task.retry`` method
to tell the worker that the task is being retried.
.. _task-custom-classes:
Custom task classes
===================
All tasks inherit from the :class:`@Task` class.
The :meth:`~@Task.run` method becomes the task body.
As an example, the following code,
.. code-block:: python
@app.task
def add(x, y):
return x + y
will do roughly this behind the scenes:
.. code-block:: python
class _AddTask(app.Task):
def run(self, x, y):
return x + y
add = app.tasks[_AddTask.name]
Instantiation
-------------
A task is **not** instantiated for every request, but is registered
in the task registry as a global instance.
This means that the ``__init__`` constructor will only be called
once per process, and that the task class is semantically closer to an
Actor.
If you have a task,
.. code-block:: python
from celery import Task
class NaiveAuthenticateServer(Task):
def __init__(self):
self.users = {'george': 'password'}
def run(self, username, password):
try:
return self.users[username] == password
except KeyError:
return False
And you route every request to the same process, then it
will keep state between requests.
This can also be useful to cache resources,
For example, a base Task class that caches a database connection:
.. code-block:: python
from celery import Task
class DatabaseTask(Task):
_db = None
@property
def db(self):
if self._db is None:
self._db = Database.connect()
return self._db
Per task usage
~~~~~~~~~~~~~~
The above can be added to each task like this:
.. code-block:: python
from celery.app import task
@app.task(base=DatabaseTask, bind=True)
def process_rows(self: task):
for row in self.db.table.all():
process_row(row)
The ``db`` attribute of the ``process_rows`` task will then
always stay the same in each process.
.. _custom-task-cls-app-wide:
App-wide usage
~~~~~~~~~~~~~~
You can also use your custom class in your whole Celery app by passing it as
the ``task_cls`` argument when instantiating the app. This argument should be
either a string giving the python path to your Task class or the class itself:
.. code-block:: python
from celery import Celery
app = Celery('tasks', task_cls='your.module.path:DatabaseTask')
This will make all your tasks declared using the decorator syntax within your
app to use your ``DatabaseTask`` class and will all have a ``db`` attribute.
The default value is the class provided by Celery: ``'celery.app.task:Task'``.
Handlers
--------
.. method:: before_start(self, task_id, args, kwargs)
Run by the worker before the task starts executing.
.. versionadded:: 5.2
:param task_id: Unique id of the task to execute.
:param args: Original arguments for the task to execute.
:param kwargs: Original keyword arguments for the task to execute.
The return value of this handler is ignored.
.. method:: after_return(self, status, retval, task_id, args, kwargs, einfo)
Handler called after the task returns.
:param status: Current task state.
:param retval: Task return value/exception.
:param task_id: Unique id of the task.
:param args: Original arguments for the task that returned.
:param kwargs: Original keyword arguments for the task
that returned.
:keyword einfo: :class:`~billiard.einfo.ExceptionInfo`
instance, containing the traceback (if any).
The return value of this handler is ignored.
.. method:: on_failure(self, exc, task_id, args, kwargs, einfo)
This is run by the worker when the task fails.
:param exc: The exception raised by the task.
:param task_id: Unique id of the failed task.
:param args: Original arguments for the task that failed.
:param kwargs: Original keyword arguments for the task
that failed.
:keyword einfo: :class:`~billiard.einfo.ExceptionInfo`
instance, containing the traceback.
The return value of this handler is ignored.
.. method:: on_retry(self, exc, task_id, args, kwargs, einfo)
This is run by the worker when the task is to be retried.
:param exc: The exception sent to :meth:`~@Task.retry`.
:param task_id: Unique id of the retried task.
:param args: Original arguments for the retried task.
:param kwargs: Original keyword arguments for the retried task.
:keyword einfo: :class:`~billiard.einfo.ExceptionInfo`
instance, containing the traceback.
The return value of this handler is ignored.
.. method:: on_success(self, retval, task_id, args, kwargs)
Run by the worker if the task executes successfully.
:param retval: The return value of the task.
:param task_id: Unique id of the executed task.
:param args: Original arguments for the executed task.
:param kwargs: Original keyword arguments for the executed task.
The return value of this handler is ignored.
.. _task-requests-and-custom-requests:
Requests and custom requests
----------------------------
Upon receiving a message to run a task, the `worker <guide-workers>`:ref:
creates a `request <celery.worker.request.Request>`:class: to represent such
demand.
Custom task classes may override which request class to use by changing the
attribute `celery.app.task.Task.Request`:attr:. You may either assign the
custom request class itself, or its fully qualified name.
The request has several responsibilities. Custom request classes should cover
them all -- they are responsible to actually run and trace the task. We
strongly recommend to inherit from `celery.worker.request.Request`:class:.
When using the `pre-forking worker <worker-concurrency>`:ref:, the methods
`~celery.worker.request.Request.on_timeout`:meth: and
`~celery.worker.request.Request.on_failure`:meth: are executed in the main
worker process. An application may leverage such facility to detect failures
which are not detected using `celery.app.task.Task.on_failure`:meth:.
As an example, the following custom request detects and logs hard time
limits, and other failures.
.. code-block:: python
import logging
from celery import Task
from celery.worker.request import Request
logger = logging.getLogger('my.package')
class MyRequest(Request):
'A minimal custom request to log failures and hard time limits.'
def on_timeout(self, soft, timeout):
super(MyRequest, self).on_timeout(soft, timeout)
if not soft:
logger.warning(
'A hard timeout was enforced for task %s',
self.task.name
)
def on_failure(self, exc_info, send_failed_event=True, return_ok=False):
super().on_failure(
exc_info,
send_failed_event=send_failed_event,
return_ok=return_ok
)
logger.warning(
'Failure detected for task %s',
self.task.name
)
class MyTask(Task):
Request = MyRequest # you can use a FQN 'my.package:MyRequest'
@app.task(base=MyTask)
def some_longrunning_task():
# use your imagination
.. _task-how-they-work:
How it works
============
Here come the technical details. This part isn't something you need to know,
but you may be interested.
All defined tasks are listed in a registry. The registry contains
a list of task names and their task classes. You can investigate this registry
yourself:
.. code-block:: pycon
>>> from proj.celery import app
>>> app.tasks
{'celery.chord_unlock':
<@task: celery.chord_unlock>,
'celery.backend_cleanup':
<@task: celery.backend_cleanup>,
'celery.chord':
<@task: celery.chord>}
This is the list of tasks built into Celery. Note that tasks
will only be registered when the module they're defined in is imported.
The default loader imports any modules listed in the
:setting:`imports` setting.
The :meth:`@task` decorator is responsible for registering your task
in the applications task registry.
When tasks are sent, no actual function code is sent with it, just the name
of the task to execute. When the worker then receives the message it can look
up the name in its task registry to find the execution code.
This means that your workers should always be updated with the same software
as the client. This is a drawback, but the alternative is a technical
challenge that's yet to be solved.
.. _task-best-practices:
Tips and Best Practices
=======================
.. _task-ignore_results:
Ignore results you don't want
-----------------------------
If you don't care about the results of a task, be sure to set the
:attr:`~@Task.ignore_result` option, as storing results
wastes time and resources.
.. code-block:: python
@app.task(ignore_result=True)
def mytask():
something()
Results can even be disabled globally using the :setting:`task_ignore_result`
setting.
.. versionadded::4.2
Results can be enabled/disabled on a per-execution basis, by passing the ``ignore_result`` boolean parameter,
when calling ``apply_async``.
.. code-block:: python
@app.task
def mytask(x, y):
return x + y
# No result will be stored
result = mytask.apply_async((1, 2), ignore_result=True)
print(result.get()) # -> None
# Result will be stored
result = mytask.apply_async((1, 2), ignore_result=False)
print(result.get()) # -> 3
By default tasks will *not ignore results* (``ignore_result=False``) when a result backend is configured.
The option precedence order is the following:
1. Global :setting:`task_ignore_result`
2. :attr:`~@Task.ignore_result` option
3. Task execution option ``ignore_result``
More optimization tips
----------------------
You find additional optimization tips in the
:ref:`Optimizing Guide <guide-optimizing>`.
.. _task-synchronous-subtasks:
Avoid launching synchronous subtasks
------------------------------------
Having a task wait for the result of another task is really inefficient,
and may even cause a deadlock if the worker pool is exhausted.
Make your design asynchronous instead, for example by using *callbacks*.
**Bad**:
.. code-block:: python
@app.task
def update_page_info(url):
page = fetch_page.delay(url).get()
info = parse_page.delay(page).get()
store_page_info.delay(url, info)
@app.task
def fetch_page(url):
return myhttplib.get(url)
@app.task
def parse_page(page):
return myparser.parse_document(page)
@app.task
def store_page_info(url, info):
return PageInfo.objects.create(url, info)
**Good**:
.. code-block:: python
def update_page_info(url):
# fetch_page -> parse_page -> store_page
chain = fetch_page.s(url) | parse_page.s() | store_page_info.s(url)
chain()
@app.task()
def fetch_page(url):
return myhttplib.get(url)
@app.task()
def parse_page(page):
return myparser.parse_document(page)
@app.task(ignore_result=True)
def store_page_info(info, url):
PageInfo.objects.create(url=url, info=info)
Here I instead created a chain of tasks by linking together
different :func:`~celery.signature`'s.
You can read about chains and other powerful constructs
at :ref:`designing-workflows`.
By default Celery will not allow you to run subtasks synchronously within a task,
but in rare or extreme cases you might need to do so.
**WARNING**:
enabling subtasks to run synchronously is not recommended!
.. code-block:: python
@app.task
def update_page_info(url):
page = fetch_page.delay(url).get(disable_sync_subtasks=False)
info = parse_page.delay(page).get(disable_sync_subtasks=False)
store_page_info.delay(url, info)
@app.task
def fetch_page(url):
return myhttplib.get(url)
@app.task
def parse_page(page):
return myparser.parse_document(page)
@app.task
def store_page_info(url, info):
return PageInfo.objects.create(url, info)
.. _task-performance-and-strategies:
Performance and Strategies
==========================
.. _task-granularity:
Granularity
-----------
The task granularity is the amount of computation needed by each subtask.
In general it is better to split the problem up into many small tasks rather
than have a few long running tasks.
With smaller tasks you can process more tasks in parallel and the tasks
won't run long enough to block the worker from processing other waiting tasks.
However, executing a task does have overhead. A message needs to be sent, data
may not be local, etc. So if the tasks are too fine-grained the
overhead added probably removes any benefit.
.. seealso::
The book `Art of Concurrency`_ has a section dedicated to the topic
of task granularity [AOC1]_.
.. _`Art of Concurrency`: http://oreilly.com/catalog/9780596521547
.. [AOC1] Breshears, Clay. Section 2.2.1, "The Art of Concurrency".
O'Reilly Media, Inc. May 15, 2009. ISBN-13 978-0-596-52153-0.
.. _task-data-locality:
Data locality
-------------
The worker processing the task should be as close to the data as
possible. The best would be to have a copy in memory, the worst would be a
full transfer from another continent.
If the data is far away, you could try to run another worker at location, or
if that's not possible - cache often used data, or preload data you know
is going to be used.
The easiest way to share data between workers is to use a distributed cache
system, like `memcached`_.
.. seealso::
The paper `Distributed Computing Economics`_ by Jim Gray is an excellent
introduction to the topic of data locality.
.. _`Distributed Computing Economics`:
http://research.microsoft.com/pubs/70001/tr-2003-24.pdf
.. _`memcached`: http://memcached.org/
.. _task-state:
State
-----
Since Celery is a distributed system, you can't know which process, or
on what machine the task will be executed. You can't even know if the task will
run in a timely manner.
The ancient async sayings tells us that “asserting the world is the
responsibility of the task”. What this means is that the world view may
have changed since the task was requested, so the task is responsible for
making sure the world is how it should be; If you have a task
that re-indexes a search engine, and the search engine should only be
re-indexed at maximum every 5 minutes, then it must be the tasks
responsibility to assert that, not the callers.
Another gotcha is Django model objects. They shouldn't be passed on as
arguments to tasks. It's almost always better to re-fetch the object from
the database when the task is running instead, as using old data may lead
to race conditions.
Imagine the following scenario where you have an article and a task
that automatically expands some abbreviations in it:
.. code-block:: python
class Article(models.Model):
title = models.CharField()
body = models.TextField()
@app.task
def expand_abbreviations(article):
article.body.replace('MyCorp', 'My Corporation')
article.save()
First, an author creates an article and saves it, then the author
clicks on a button that initiates the abbreviation task:
.. code-block:: pycon
>>> article = Article.objects.get(id=102)
>>> expand_abbreviations.delay(article)
Now, the queue is very busy, so the task won't be run for another 2 minutes.
In the meantime another author makes changes to the article, so
when the task is finally run, the body of the article is reverted to the old
version because the task had the old body in its argument.
Fixing the race condition is easy, just use the article id instead, and
re-fetch the article in the task body:
.. code-block:: python
@app.task
def expand_abbreviations(article_id):
article = Article.objects.get(id=article_id)
article.body.replace('MyCorp', 'My Corporation')
article.save()
.. code-block:: pycon
>>> expand_abbreviations.delay(article_id)
There might even be performance benefits to this approach, as sending large
messages may be expensive.
.. _task-database-transactions:
Database transactions
---------------------
Let's have a look at another example:
.. code-block:: python
from django.db import transaction
from django.http import HttpResponseRedirect
@transaction.atomic
def create_article(request):
article = Article.objects.create()
expand_abbreviations.delay(article.pk)
return HttpResponseRedirect('/articles/')
This is a Django view creating an article object in the database,
then passing the primary key to a task. It uses the `transaction.atomic`
decorator, that will commit the transaction when the view returns, or
roll back if the view raises an exception.
There is a race condition because transactions are atomic. This means the article object is not persisted to the database until after the view function returns a response. If the asynchronous task starts executing before the transaction is committed, it may attempt to query the article object before it exists. To prevent this, we need to ensure that the transaction is committed before triggering the task.
The solution is to use
:meth:`~celery.contrib.django.task.DjangoTask.delay_on_commit` instead:
.. code-block:: python
from django.db import transaction
from django.http import HttpResponseRedirect
@transaction.atomic
def create_article(request):
article = Article.objects.create()
expand_abbreviations.delay_on_commit(article.pk)
return HttpResponseRedirect('/articles/')
This method was added in Celery 5.4. It's a shortcut that uses Django's
``on_commit`` callback to launch your Celery task once all transactions
have been committed successfully.
With Celery <5.4
~~~~~~~~~~~~~~~~
If you're using an older version of Celery, you can replicate this behaviour
using the Django callback directly as follows:
.. code-block:: python
import functools
from django.db import transaction
from django.http import HttpResponseRedirect
@transaction.atomic
def create_article(request):
article = Article.objects.create()
transaction.on_commit(
functools.partial(expand_abbreviations.delay, article.pk)
)
return HttpResponseRedirect('/articles/')
.. note::
``on_commit`` is available in Django 1.9 and above, if you are using a
version prior to that then the `django-transaction-hooks`_ library
adds support for this.
.. _`django-transaction-hooks`: https://github.com/carljm/django-transaction-hooks
.. _task-example:
Example
=======
Let's take a real world example: a blog where comments posted need to be
filtered for spam. When the comment is created, the spam filter runs in the
background, so the user doesn't have to wait for it to finish.
I have a Django blog application allowing comments
on blog posts. I'll describe parts of the models/views and tasks for this
application.
``blog/models.py``
------------------
The comment model looks like this:
.. code-block:: python
from django.db import models
from django.utils.translation import ugettext_lazy as _
class Comment(models.Model):
name = models.CharField(_('name'), max_length=64)
email_address = models.EmailField(_('email address'))
homepage = models.URLField(_('home page'),
blank=True, verify_exists=False)
comment = models.TextField(_('comment'))
pub_date = models.DateTimeField(_('Published date'),
editable=False, auto_add_now=True)
is_spam = models.BooleanField(_('spam?'),
default=False, editable=False)
class Meta:
verbose_name = _('comment')
verbose_name_plural = _('comments')
In the view where the comment is posted, I first write the comment
to the database, then I launch the spam filter task in the background.
.. _task-example-blog-views:
``blog/views.py``
-----------------
.. code-block:: python
from django import forms
from django.http import HttpResponseRedirect
from django.template.context import RequestContext
from django.shortcuts import get_object_or_404, render_to_response
from blog import tasks
from blog.models import Comment
class CommentForm(forms.ModelForm):
class Meta:
model = Comment
def add_comment(request, slug, template_name='comments/create.html'):
post = get_object_or_404(Entry, slug=slug)
remote_addr = request.META.get('REMOTE_ADDR')
if request.method == 'post':
form = CommentForm(request.POST, request.FILES)
if form.is_valid():
comment = form.save()
# Check spam asynchronously.
tasks.spam_filter.delay(comment_id=comment.id,
remote_addr=remote_addr)
return HttpResponseRedirect(post.get_absolute_url())
else:
form = CommentForm()
context = RequestContext(request, {'form': form})
return render_to_response(template_name, context_instance=context)
To filter spam in comments I use `Akismet`_, the service
used to filter spam in comments posted to the free blog platform
`Wordpress`. `Akismet`_ is free for personal use, but for commercial use you
need to pay. You have to sign up to their service to get an API key.
To make API calls to `Akismet`_ I use the `akismet.py`_ library written by
`Michael Foord`_.
.. _task-example-blog-tasks:
``blog/tasks.py``
-----------------
.. code-block:: python
from celery import Celery
from akismet import Akismet
from django.core.exceptions import ImproperlyConfigured
from django.contrib.sites.models import Site
from blog.models import Comment
app = Celery(broker='amqp://')
@app.task
def spam_filter(comment_id, remote_addr=None):
logger = spam_filter.get_logger()
logger.info('Running spam filter for comment %s', comment_id)
comment = Comment.objects.get(pk=comment_id)
current_domain = Site.objects.get_current().domain
akismet = Akismet(settings.AKISMET_KEY, 'http://{0}'.format(domain))
if not akismet.verify_key():
raise ImproperlyConfigured('Invalid AKISMET_KEY')
is_spam = akismet.comment_check(user_ip=remote_addr,
comment_content=comment.comment,
comment_author=comment.name,
comment_author_email=comment.email_address)
if is_spam:
comment.is_spam = True
comment.save()
return is_spam
.. _`Akismet`: http://akismet.com/faq/
.. _`akismet.py`: http://www.voidspace.org.uk/downloads/akismet.py
.. _`Michael Foord`: http://www.voidspace.org.uk/
.. _`exponential backoff`: https://en.wikipedia.org/wiki/Exponential_backoff
.. _`jitter`: https://en.wikipedia.org/wiki/Jitter
.. _`Pydantic`: https://docs.pydantic.dev/
|