File: controller.c

package info (click to toggle)
cen64 0.3%2Bgit20160403-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 4,160 kB
  • sloc: ansic: 14,512; asm: 772; cpp: 663; makefile: 12
file content (404 lines) | stat: -rw-r--r-- 11,181 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
//
// si/controller.c: Serial interface controller.
//
// CEN64: Cycle-Accurate Nintendo 64 Emulator.
// Copyright (C) 2015, Tyler J. Stachecki.
//
// This file is subject to the terms and conditions defined in
// 'LICENSE', which is part of this source code package.
//

#include "common.h"
#include "bus/address.h"
#include "bus/controller.h"
#include "gl_window.h"
#include "ri/controller.h"
#include "si/cic.h"
#include "si/controller.h"
#include "si/rtc.h"
#include "thread.h"
#include "vi/controller.h"
#include "vr4300/interface.h"
#include <assert.h>

#ifdef DEBUG_MMIO_REGISTER_ACCESS
const char *si_register_mnemonics[NUM_SI_REGISTERS] = {
#define X(reg) #reg,
#include "si/registers.md"
#undef X
};
#endif

static int read_pif_ram(void *opaque, uint32_t address, uint32_t *word);
static int write_pif_ram(void *opaque, uint32_t address, uint32_t word, uint32_t dqm);

static void pif_process(struct si_controller *si);
static int pif_perform_command(struct si_controller *si, unsigned channel,
  uint8_t *send_buf, uint8_t send_bytes, uint8_t *recv_buf, uint8_t recv_bytes);

static int eeprom_read(struct eeprom *eeprom, uint8_t *send_buf, uint8_t send_bytes, uint8_t *recv_buf, uint8_t recv_bytes);
static int eeprom_write(struct eeprom *eeprom, uint8_t *send_buf, uint8_t send_bytes, uint8_t *recv_buf, uint8_t recv_bytes);

// Initializes the SI.
int si_init(struct si_controller *si, struct bus_controller *bus,
  const uint8_t *pif_rom, const uint8_t *cart_rom, bool dd_present,
  const uint8_t *eeprom, size_t eeprom_size,
  const struct controller *controller) {
  uint32_t cic_seed;

  si->bus = bus;
  si->rom = pif_rom;

  if (cart_rom) {
    if (get_cic_seed(cart_rom, &cic_seed)) {
      printf("Unknown CIC type; is this a byte-swapped ROM?\n");
      return 1;
    }

    si->ram[0x24] = cic_seed >> 24;
    si->ram[0x25] = cic_seed >> 16;
    si->ram[0x26] = cic_seed >>  8;
    si->ram[0x27] = cic_seed >>  0;
  }

  else if (dd_present) {
    si->ram[0x24] = 0x00;
    si->ram[0x25] = 0x0A;
    si->ram[0x26] = 0xDD;
    si->ram[0x27] = 0x3F;
  }

  // Specify 8MiB RDRAM for 6102/6105 carts.
  if (si->ram[0x26] == 0x3F && si->ram[0x27] == 0x3F)
    bus_write_word(si, 0x318, 0x800000, ~0U);

  else if (si->ram[0x26] == 0x91 && si->ram[0x27] == 0x3F)
    bus_write_word(si, 0x3F0, 0x800000, ~0U);

  // initialize EEPROM
  si->eeprom.data = eeprom;
  si->eeprom.size = eeprom_size;

  // controllers
  memcpy(si->controller, controller, sizeof(struct controller) * 4);

  return 0;
}

// Handles a single PIF command.
int pif_perform_command(struct si_controller *si,
  unsigned channel, uint8_t *send_buf, uint8_t send_bytes,
  uint8_t *recv_buf, uint8_t recv_bytes) {
  uint8_t command = send_buf[0];
  struct bus_controller *bus;

  switch(command) {
    // Read status/reset.
    case 0x00:
    case 0xFF:
      switch(channel) {
        case 0:
          // always return that controller 0 is connected so that users
          // who don't specify a controller on command line will still
          // have good experience
          recv_buf[0] = 0x05;
          recv_buf[1] = 0x00;
          recv_buf[2] = si->controller[channel].pak == PAK_NONE ? 0x00 : 0x01;
          break;

        case 1:
        case 2:
        case 3:
          if (si->controller[channel].present) {
            recv_buf[0] = 0x05;
            recv_buf[1] = 0x00;
            recv_buf[2] = si->controller[channel].pak == PAK_NONE ? 0x00 : 0x01;
          }
          else
            recv_buf[0] = recv_buf[1] = recv_buf[2] = 0;
          break;

        case 4:
          // XXX hack alert: this returns 16k EEPROM in the case of a
          // 16k EEPROM and returns 4k EEPROM in all other cases. This
          // is likely a hack to make games that expect EEPROM work,
          // even if the user doesn't supply one on the command line.
          recv_buf[0] = 0x00;
          recv_buf[1] = si->eeprom.size == 0x800 ? 0xC0 : 0x80;
          recv_buf[2] = 0x00;
          break;

        default:
          assert(0 && "Invalid channel.");
          return 1;
      }

      break;

    // Read from controller.
    case 0x01:
      switch(channel) {
        case 0:
          memcpy(&bus, si, sizeof(bus));

          if (likely(bus->vi->window)) {
            cen64_mutex_lock(&bus->vi->window->event_mutex);
            memcpy(recv_buf, si->input, sizeof(si->input));
            cen64_mutex_unlock(&bus->vi->window->event_mutex);
          }

          // -nointerface
          else
            memset(recv_buf, 0x0, sizeof(si->input));

          break;

        default:
          return 1;
      }

      break;

    // Read from controller pak
    case 0x02:
      if (channel < 4)
        return controller_pak_read(&si->controller[channel],
            send_buf, send_bytes, recv_buf, recv_bytes);
      else
        assert(0 && "Invalid channel for controller pak read");

    // Write to controller pak
    case 0x03:
      if (channel < 4)
        return controller_pak_write(&si->controller[channel],
            send_buf, send_bytes, recv_buf, recv_bytes);
      else
        assert(0 && "Invalid channel for controller pak write");

    // EEPROM read
    case 0x04:
      if (channel != 4)
        assert(0 && "Invalid channel for EEPROM read");
      return eeprom_read(&si->eeprom, send_buf, send_bytes, recv_buf, recv_bytes);

    // EEPROM write
    case 0x05:
      if (channel != 4)
        assert(0 && "Invalid channel for EEPROM write");
      return eeprom_write(&si->eeprom, send_buf, send_bytes, recv_buf, recv_bytes);

    // RTC status
    case 0x06:
      if (channel != 4)
        assert(0 && "Invalid channel for RTC status");
      return rtc_status(send_buf, send_bytes, recv_buf, recv_bytes);

    // RTC read
    case 0x07:
      if (channel != 4)
        assert(0 && "Invalid channel for RTC read");
      return rtc_read(send_buf, send_bytes, recv_buf, recv_bytes);

    // RTC write
    case 0x08:
      if (channel != 4)
        assert(0 && "Invalid channel for RTC write");
      return rtc_write(send_buf, send_bytes, recv_buf, recv_bytes);

    // Unimplemented command:
    default:
      return 1;
  }

  return 0;
}

// Emulates the PIF operation.
void pif_process(struct si_controller *si) {
  unsigned channel = 0;
  int ptr = 0;

  if (si->command[0x3F] != 0x1)
    return;

  // Logic ripped from MAME.
  while (ptr < 0x3F) {
    int8_t send_bytes = si->command[ptr++];

    if (send_bytes == -2)
      break;

    if (send_bytes < 0)
      continue;

    if (send_bytes > 0 && (send_bytes & 0xC0) == 0) {
      int8_t recv_bytes = si->command[ptr++];
      uint8_t recv_buf[0x40];
      uint8_t send_buf[0x40];
      int result;

      if (recv_bytes == -2)
        break;

      memcpy(send_buf, si->command + ptr, send_bytes);
      ptr += send_bytes;

      result = pif_perform_command(si, channel,
        send_buf, send_bytes, recv_buf, recv_bytes);

      if (result == 0) {
        memcpy(si->ram + ptr, recv_buf, recv_bytes);
        ptr += recv_bytes;
      }

      else
        si->ram[ptr - 2] |= 0x80;
    }

    channel++;
  }

  // clear the PIF's busy flag
  si->ram[0x3F] &= ~0x80;
}

// Reads a word from PIF RAM.
int read_pif_ram(void *opaque, uint32_t address, uint32_t *word) {
  struct si_controller *si = (struct si_controller *) opaque;
  unsigned offset = (address - PIF_RAM_BASE_ADDRESS) & 0x3F;

  if (offset == 0x24) {
    si->pif_status = 0x80;

    memcpy(word, si->ram + offset, sizeof(*word));
    *word = byteswap_32(*word);
  }

  else if (offset == 0x3C)
    *word = si->pif_status;

  else {
    memcpy(word, si->ram + offset, sizeof(*word));
    *word = byteswap_32(*word);
  }

  return 0;
}

// Reads a word from PIF ROM.
int read_pif_rom_and_ram(void *opaque, uint32_t address, uint32_t *word) {
  uint32_t offset = address - PIF_ROM_BASE_ADDRESS;
  struct si_controller *si = (struct si_controller*) opaque;

  if (address >= PIF_RAM_BASE_ADDRESS)
    return read_pif_ram(opaque, address, word);

  memcpy(word, si->rom + offset, sizeof(*word));
  *word = byteswap_32(*word);
  return 0;
}

// Reads a word from the SI MMIO register space.
int read_si_regs(void *opaque, uint32_t address, uint32_t *word) {
  struct si_controller *si = (struct si_controller *) opaque;
  unsigned offset = address - SI_REGS_BASE_ADDRESS;
  enum si_register reg = (offset >> 2);

  *word = si->regs[reg];
  debug_mmio_read(si, si_register_mnemonics[reg], *word);
  return 0;
}

// Writes a word to PIF RAM.
int write_pif_ram(void *opaque, uint32_t address, uint32_t word, uint32_t dqm) {
  struct si_controller *si = (struct si_controller *) opaque;
  unsigned offset = (address - PIF_RAM_BASE_ADDRESS) & 0x3F;
  uint32_t orig_word;

  memcpy(&orig_word, si->ram + offset, sizeof(orig_word));
  orig_word = byteswap_32(orig_word) & ~dqm;
  word = byteswap_32(orig_word | word);
  memcpy(si->ram + offset, &word, sizeof(word));

  si->regs[SI_STATUS_REG] |= 0x1000;
  signal_rcp_interrupt(si->bus->vr4300, MI_INTR_SI);
  return 0;
}

// Writes a word to PIF ROM.
int write_pif_rom_and_ram(void *opaque, uint32_t address, uint32_t word, uint32_t dqm) {
  if (address >= PIF_RAM_BASE_ADDRESS)
    return write_pif_ram(opaque, address, word, dqm);

  assert(0 && "Attempt to write to PIF ROM.");
  return 0;
}

// Writes a word to the SI MMIO register space.
int write_si_regs(void *opaque, uint32_t address, uint32_t word, uint32_t dqm) {
  struct si_controller *si = (struct si_controller *) opaque;
  unsigned offset = address - SI_REGS_BASE_ADDRESS;
  enum si_register reg = (offset >> 2);

  debug_mmio_write(si, si_register_mnemonics[reg], word, dqm);

  if (reg == SI_STATUS_REG) {
    clear_rcp_interrupt(si->bus->vr4300, MI_INTR_SI);
    si->regs[SI_STATUS_REG] &= ~0x1000;
  }

  else if (reg == SI_PIF_ADDR_RD64B_REG) {
    uint32_t offset = si->regs[SI_DRAM_ADDR_REG] & 0x1FFFFFFF;

    pif_process(si);
    memcpy(si->bus->ri->ram + offset,
      si->ram, sizeof(si->ram));

    signal_rcp_interrupt(si->bus->vr4300, MI_INTR_SI);
    si->regs[SI_STATUS_REG] |= 0x1000;
  }

  else if (reg == SI_PIF_ADDR_WR64B_REG) {
    uint32_t offset = si->regs[SI_DRAM_ADDR_REG] & 0x1FFFFFFF;

    memcpy(si->ram, si->bus->ri->ram + offset, sizeof(si->ram));
    memcpy(si->command, si->ram, sizeof(si->command));

    signal_rcp_interrupt(si->bus->vr4300, MI_INTR_SI);
    si->regs[SI_STATUS_REG] |= 0x1000;
  }

  else {
    si->regs[reg] &= ~dqm;
    si->regs[reg] |= word;
  }

  return 0;
}


int eeprom_read(struct eeprom *eeprom, uint8_t *send_buf, uint8_t send_bytes, uint8_t *recv_buf, uint8_t recv_bytes) {
  assert(send_bytes == 2 && recv_bytes == 8);

  uint16_t address = send_buf[1] << 3;

  if (eeprom->data != NULL && address <= eeprom->size - 8) {
    memcpy(recv_buf, &eeprom->data[address], 8);
    return 0;
  }

  return 1;
}

static int eeprom_write(struct eeprom *eeprom, uint8_t *send_buf, uint8_t send_bytes, uint8_t *recv_buf, uint8_t recv_bytes) {
  assert(send_bytes == 10);

  uint16_t address = send_buf[1] << 3;

  if (eeprom->data != NULL && address <= eeprom->size - 8) {
    memcpy(&eeprom->data[address], send_buf + 2, 8);
    return 0;
  }

  return 1;
}