File: controller.c

package info (click to toggle)
cen64 0.3%2Bgit20180227-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 4,460 kB
  • sloc: ansic: 23,713; asm: 772; cpp: 663; makefile: 14
file content (646 lines) | stat: -rw-r--r-- 20,652 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
//
// dd/controller.c: DD controller.
//
// CEN64: Cycle-Accurate Nintendo 64 Emulator.
// Copyright (C) 2016, Mike Ryan
//
// This file is subject to the terms and conditions defined in
// 'LICENSE', which is part of this source code package.
//

//
// Thanks go out to OzOnE and Luigiblood (Seru-kun) for reverse
// engineering, documenting, and assisting with the reversal of
// this device!
//
// Thanks also go out to Happy_ for a clean implementation in MESS
// and for assistance debugging this rat's nest
//

#include "common.h"
#include "local_time.h"
#include "bus/address.h"
#include "bus/controller.h"
#include "dd/controller.h"
#include "ri/controller.h"
#include "vr4300/interface.h"

#ifdef DEBUG_MMIO_REGISTER_ACCESS
#define debug_mmio_read(what, mnemonic, val) printf(#what": READ [%s]: 0x%.8X\n", mnemonic, val)
#define debug_mmio_write(what, mnemonic, val, dqm) printf(#what": WRITE [%s]: 0x%.8X/0x%.8X\n", mnemonic, val, dqm)

const char *dd_register_mnemonics[NUM_DD_REGISTERS] = {
#define X(reg) #reg,
#include "dd/registers.md"
#undef X
};
#endif

static int read_dd_regs(void *opaque, uint32_t address, uint32_t *word);
static int write_dd_regs(void *opaque, uint32_t address, uint32_t word, uint32_t dqm);

static int read_dd_ms_ram(void *opaque, uint32_t address, uint32_t *word);
static int write_dd_ms_ram(void *opaque, uint32_t address, uint32_t word, uint32_t dqm);

// ASIC_CMD_STATUS flags.
#define DD_CMD_NOOP           0x00000000U
#define DD_CMD_SEEK_READ      0x00010001U
#define DD_CMD_SEEK_WRITE     0x00020001U
#define DD_CMD_RECALIBRATE    0x00030001U // ???
#define DD_CMD_SLEEP          0x00040000U
#define DD_CMD_START          0x00050001U
#define DD_CMD_SET_STANDBY    0x00060000U
#define DD_CMD_SET_SLEEP      0x00070000U
#define DD_CMD_CLR_DSK_CHNG   0x00080000U
#define DD_CMD_CLR_RESET      0x00090000U
#define DD_CMD_READ_VERSION   0x000A0000U
#define DD_CMD_SET_DISK_TYPE  0x000B0001U
#define DD_CMD_REQUEST_STATUS 0x000C0000U
#define DD_CMD_STANDBY        0x000D0000U
#define DD_CMD_IDX_LOCK_RETRY 0x000E0000U // ???
#define DD_CMD_SET_YEAR_MONTH 0x000F0000U
#define DD_CMD_SET_DAY_HOUR   0x00100000U
#define DD_CMD_SET_MIN_SEC    0x00110000U
#define DD_CMD_GET_YEAR_MONTH 0x00120000U
#define DD_CMD_GET_DAY_HOUR   0x00130000U
#define DD_CMD_GET_MIN_SEC    0x00140000U
#define DD_CMD_FEATURE_INQ    0x001B0000U

#define DD_STATUS_DATA_RQ     0x40000000U
#define DD_STATUS_C2_XFER     0x10000000U
#define DD_STATUS_BM_ERR      0x08000000U
#define DD_STATUS_BM_INT      0x04000000U
#define DD_STATUS_MECHA_INT   0x02000000U
#define DD_STATUS_DISK_PRES   0x01000000U
#define DD_STATUS_BUSY_STATE  0x00800000U
#define DD_STATUS_RST_STATE   0x00400000U
#define DD_STATUS_MTR_N_SPIN  0x00100000U
#define DD_STATUS_HEAD_RTRCT  0x00080000U
#define DD_STATUS_WR_PR_ERR   0x00040000U
#define DD_STATUS_MECHA_ERR   0x00020000U
#define DD_STATUS_DISK_CHNG   0x00010000U

// ASIC_BM_STATUS_CTL flags.
#define DD_BM_STATUS_RUNNING  0x80000000U
#define DD_BM_STATUS_ERROR    0x04000000U
#define DD_BM_STATUS_MICRO    0x02000000U // ???
#define DD_BM_STATUS_BLOCK    0x01000000U
#define DD_BM_STATUS_C1CRR    0x00800000U
#define DD_BM_STATUS_C1DBL    0x00400000U
#define DD_BM_STATUS_C1SNG    0x00200000U
#define DD_BM_STATUS_C1ERR    0x00010000U // Typo ???

#define DD_BM_CTL_START       0x80000000U
#define DD_BM_CTL_MNGRMODE    0x40000000U
#define DD_BM_CTL_INTMASK     0x20000000U
#define DD_BM_CTL_RESET       0x10000000U
#define DD_BM_CTL_DIS_OR_CHK  0x08000000U // ???
#define DD_BM_CTL_DIS_C1_CRR  0x04000000U
#define DD_BM_CTL_BLK_TRANS   0x02000000U
#define DD_BM_CTL_MECHA_RST   0x01000000U

#define DD_TRACK_LOCK         0x60000000U

#define DD_DS_BUFFER_ADDRESS  0x05000400
#define DD_C2S_BUFFER_ADDRESS 0x05000000

// Magic numbers courtesy of Happy_
const uint32_t zone_sec_size[16] = {
  232, 216, 208, 192, 176, 160, 144, 128,
  216, 208, 192, 176, 160, 144, 128, 112,
};
#define SECTORS_PER_BLOCK 85
#define BLOCKS_PER_TRACK   2

static void dd_update_bm(struct dd_controller *dd);
static void dd_write_sector(struct dd_controller *dd);
static void dd_read_sector(struct dd_controller *dd);
static void set_offset(struct dd_controller *dd);
static void get_dd_time(uint8_t *out);

// Initializes the DD.
int dd_init(struct dd_controller *dd, struct bus_controller *bus,
  const uint8_t *ddipl, const uint8_t *ddrom, size_t ddrom_size) {
  dd->bus = bus;
  dd->ipl_rom = ddipl;
  dd->rom = ddrom;
  dd->rom_size = ddrom_size;

  dd->retail = true;
  dd->regs[DD_ASIC_ID_REG] = 0x00030000;

  return 0;
}

// Reads a word from the DD MMIO register space.
int read_dd_regs(void *opaque, uint32_t address, uint32_t *word) {
  struct dd_controller *dd = (struct dd_controller *) opaque;
  unsigned offset = address - DD_REGS_BASE_ADDRESS;
  enum dd_register reg = (offset >> 2);

  // XXX: There is some 'extra' space in the DD register MMIO
  // space that gets mapped here in order to make the memory
  // map a little more efficient. It shouldn't impact anything,
  // but be wary.

  *word = dd->regs[reg];
  debug_mmio_read(dd, dd_register_mnemonics[reg], *word);
  // FIXME this mmio_read won't catch updates to DD_ASIC_CMD_STATUS

  switch (reg) {
    case DD_ASIC_CMD_STATUS:
      if (dd->rom != NULL)
        dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_DISK_PRES;
      else
        dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_DISK_PRES;
      *word = dd->regs[DD_ASIC_CMD_STATUS];

      // important! we do not return this updated status as part of the read
      if ((dd->regs[DD_ASIC_CMD_STATUS] & DD_STATUS_BM_INT) &&
          (SECTORS_PER_BLOCK < dd->regs[DD_ASIC_CUR_SECTOR])) {
        // debug("DD Read Gap, Clearing INT\n");
        dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_BM_INT;
        clear_dd_interrupt(dd->bus->vr4300);
        dd_update_bm(dd);
      }
      break;

    default:
      break;
  }

  return 0;
}

// Writes a word to the DD MMIO register space.
int write_dd_regs(void *opaque, uint32_t address, uint32_t word, uint32_t dqm) {
  struct dd_controller *dd = (struct dd_controller *) opaque;
  unsigned offset = address - DD_REGS_BASE_ADDRESS;
  enum dd_register reg = (offset >> 2);

  // XXX: There is some 'extra' space in the DD register MMIO
  // space that gets mapped here in order to make the memory
  // map a little more efficient. It shouldn't impact anything,
  // but be wary.

  debug_mmio_write(dd, dd_register_mnemonics[reg], word, dqm);

  // Command register written: do something.
  if (reg == DD_ASIC_CMD_STATUS) {
    uint8_t now[6];

    switch (word) {
      // get time
      case DD_CMD_GET_YEAR_MONTH:
      case DD_CMD_GET_DAY_HOUR:
      case DD_CMD_GET_MIN_SEC:
        get_dd_time(now);
        if (word == DD_CMD_GET_YEAR_MONTH)
          dd->regs[DD_ASIC_DATA] = (now[0] << 24) | (now[1] << 16);
        else if (word == DD_CMD_GET_DAY_HOUR)
          dd->regs[DD_ASIC_DATA] = (now[2] << 24) | (now[3] << 16);
        else if (word == DD_CMD_GET_MIN_SEC)
          dd->regs[DD_ASIC_DATA] = (now[4] << 24) | (now[5] << 16);
        break;

      case DD_CMD_SEEK_READ:
        dd->regs[DD_ASIC_CUR_TK] = dd->regs[DD_ASIC_DATA] >> 16;
        set_offset(dd);
        dd->regs[DD_ASIC_CUR_TK] |= DD_TRACK_LOCK;
        dd->write = false;
        break;

      case DD_CMD_SEEK_WRITE:
        dd->regs[DD_ASIC_CUR_TK] = dd->regs[DD_ASIC_DATA] >> 16;
        set_offset(dd);
        dd->regs[DD_ASIC_CUR_TK] |= DD_TRACK_LOCK;
        dd->write = true;
        break;

      case DD_CMD_CLR_DSK_CHNG:
        dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_DISK_CHNG;
        break;

      case DD_CMD_CLR_RESET:
        dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_RST_STATE;
        break;

      default:
        debug("Unimplemented DD command %04x\n", word >> 16);
    }

    // Always signal an interrupt in response.
    // debug("Sending MECHA Int\n");
    dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_MECHA_INT;
    signal_dd_interrupt(dd->bus->vr4300);
  }

  // Buffer manager control request: handle it.
  else if (reg == DD_ASIC_BM_STATUS_CTL) {
    uint8_t start_sector = (word >> 16) & 0xff;
    if (start_sector == 0x00) {
      dd->start_block = 0;
      dd->regs[DD_ASIC_CUR_SECTOR] = 0;
    }
    else if (start_sector == 0x5A) {
      dd->start_block = 1;
      dd->regs[DD_ASIC_CUR_SECTOR] = 0;
    } else {
      assert(0 && "sector not aligned");
    }

    if (word & DD_BM_CTL_BLK_TRANS) // start block xfer
      dd->regs[DD_ASIC_BM_STATUS_CTL] |= DD_BM_STATUS_BLOCK;
    if (word & DD_BM_CTL_MECHA_RST) // reset MECHA int
      dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_MECHA_INT;

    // handle reset
    if (word & DD_BM_CTL_RESET)
      dd->bm_reset_held = true;
    if (!(word & DD_BM_CTL_RESET) && dd->bm_reset_held) {
      dd->bm_reset_held = false;
      dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_BM_INT;
      dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_BM_ERR;
      dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_DATA_RQ;
      dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_C2_XFER;
      dd->regs[DD_ASIC_BM_STATUS_CTL] = 0;
      dd->regs[DD_ASIC_CUR_SECTOR] = 0;
      dd->start_block = 0;
      debug("dd: BM RESET\n");
    }

    // clear DD interrupt if BM and MECHA int are clear
    if (!(dd->regs[DD_ASIC_CMD_STATUS] & DD_STATUS_BM_INT) &&
        !(dd->regs[DD_ASIC_CMD_STATUS] & DD_STATUS_MECHA_INT))
      clear_dd_interrupt(dd->bus->vr4300);

    // start transfer
    if (word & DD_BM_CTL_START) {
      if (dd->write && (word & DD_BM_CTL_MNGRMODE))
        debug("Attempt to write disk with BM mode 1\n");
      if (dd->write && !(word & DD_BM_CTL_MNGRMODE))
        debug("Attempt to write disk with BM mode 0\n");
      dd->regs[DD_ASIC_BM_STATUS_CTL] |= DD_BM_STATUS_RUNNING;
      debug("dd: Start BM\n");
      dd_update_bm(dd);
    }
  }

  // This is done by the IPL and a lot of games. The only word
  // ever know to be written to this register is 0xAAAA0000.
  else if (reg == DD_ASIC_HARD_RESET) {
    assert(word == 0xAAAA0000 && "dd: Hard reset without magic word?");

    dd->regs[DD_ASIC_CMD_STATUS] = DD_STATUS_RST_STATE;
  }

  else {
    dd->regs[reg] &= ~dqm;
    dd->regs[reg] |= word;
  }

  return 0;
}

// PI write to PI_CART_ADDR_REG
void dd_pi_write(void *opaque, uint32_t address) {
  struct dd_controller *dd = opaque;

  // clear DATA RQ
  if (address == DD_DS_BUFFER_ADDRESS && dd->rom != NULL) {
    dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_DATA_RQ;
    dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_BM_INT;
    clear_dd_interrupt(dd->bus->vr4300);
  }

  // clear C2
  else if (address == DD_C2S_BUFFER_ADDRESS && dd->rom != NULL) {
    dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_C2_XFER;
    dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_BM_INT;
    clear_dd_interrupt(dd->bus->vr4300);
  }
}

// Reads a word from the DD IPL ROM.
int read_dd_ipl_rom(void *opaque, uint32_t address, uint32_t *word) {
  uint32_t offset = address - DD_IPL_ROM_ADDRESS;
  struct dd_controller *dd = (struct dd_controller*) opaque;

  if (!dd->ipl_rom)
    memset(word, 0, sizeof(*word));

  else {
    memcpy(word, dd->ipl_rom + offset, sizeof(*word));
    *word = byteswap_32(*word);
  }

  debug_mmio_read(dd, "DD_IPL_ROM", *word);
  return 0;
}

// copy data from RDRAM to DD
int dd_dma_read(void *opaque, uint32_t source, uint32_t dest, uint32_t length) {
  struct dd_controller *dd = (struct dd_controller *)opaque;

  // data buffer
  if (dest == DD_DS_BUFFER_ADDRESS) {
    memcpy(dd->ds_buffer, dd->bus->ri->ram + source, length);
    dd_update_bm(dd);
  }

  // microsequencer, not actually used by CEN
  else if (dest == DD_MS_RAM_ADDRESS) {
    uint32_t offset = dest - DD_MS_RAM_ADDRESS;
    assert(offset + length <= DD_MS_RAM_LEN);
    memcpy(dd->ms_ram + offset, dd->bus->ri->ram + source, length);
  }

  else
    debug("Unknown DD DMA read (%08x)\n", dest);

  return 0;
}

// copy data from DD to RDRAM
int dd_dma_write(void *opaque, uint32_t source, uint32_t dest, uint32_t length) {
  struct dd_controller *dd = (struct dd_controller *)opaque;

  // data buffer
  if (source == DD_DS_BUFFER_ADDRESS) {
    memcpy(dd->bus->ri->ram + dest, dd->ds_buffer, length);
    dd_update_bm(dd);
  }

  // C2 buffer, always 0's
  else if (source == DD_C2S_BUFFER_ADDRESS) {
    memset(dd->bus->ri->ram + dest, 0, length);
    dd_update_bm(dd);
  }

  else
    debug("Unknown DD DMA write (%08x)\n", source);

  return 0;
}

// Writes a word to the DD IPL ROM.
int write_dd_ipl_rom(void *opaque, uint32_t address, uint32_t word, uint32_t dqm) {
  assert(0 && "Attempt to write to DD IPL ROM.");
  return 0;
}

// Reads a word from the DD C2S/DS buffer.
int read_dd_controller(void *unused(opaque), uint32_t address, uint32_t *word) {
  // XXX: Hack to reduce memorymap entries.
  if (address >= DD_MS_RAM_ADDRESS)
    return read_dd_ms_ram(opaque, address, word);

  else if (address >= DD_REGS_BASE_ADDRESS)
    return read_dd_regs(opaque, address, word);

  // XXX: Normal CS2/DS buffer access begins here.
  debug_mmio_read(dd, "DD_C2S/DS_BUFFER", *word);
  return 0;
}

// Writes a word to the DD C2S/DS BUFFER.
int write_dd_controller(void *unused(opaque), uint32_t address, uint32_t word, uint32_t dqm) {
  // XXX: Hack to reduce memorymap entries.
  if (address >= DD_MS_RAM_ADDRESS)
    return write_dd_ms_ram(opaque, address, word, dqm);

  else if (address >= DD_REGS_BASE_ADDRESS)
    return write_dd_regs(opaque, address, word, dqm);

  // XXX: Normal CS2/DS buffer access begins here.
  debug_mmio_write(dd, "DD_C2S/DS_BUFFER", word, dqm);
  return 0;
}

// Reads a word from the DD MS RAM.
int read_dd_ms_ram(void *unused(opaque), uint32_t address, uint32_t *word) {
  debug_mmio_read(dd, "DD_MS_RAM", *word);
  return 0;
}

// Writes a word to the DD MS RAM.
int write_dd_ms_ram(void *unused(opaque), uint32_t address, uint32_t word, uint32_t dqm) {
  debug_mmio_write(dd, "DD_MS_RAM", word, dqm);
  return 0;
}

void dd_update_bm(struct dd_controller *dd) {
  // quit if not running
  if (!(dd->regs[DD_ASIC_BM_STATUS_CTL] & DD_BM_STATUS_RUNNING))
    return;

  // handle writes
  if (dd->write) {
    // first sector: issue an interrupt to actually get data to be written
    if (dd->regs[DD_ASIC_CUR_SECTOR] == 0) {
      dd->regs[DD_ASIC_CUR_SECTOR] += 1;
      dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_DATA_RQ;
    }

    // subsequent data sectors, write previous sector's data
    else if (dd->regs[DD_ASIC_CUR_SECTOR] < SECTORS_PER_BLOCK) {
      dd_write_sector(dd);
      dd->regs[DD_ASIC_CUR_SECTOR] += 1;
      dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_DATA_RQ;
    }

    // final data sector: write the last sector
    else if (dd->regs[DD_ASIC_CUR_SECTOR] < SECTORS_PER_BLOCK + 1) {
      // continue to next block
      if (dd->regs[DD_ASIC_BM_STATUS_CTL] & DD_BM_STATUS_BLOCK) {
        dd_write_sector(dd);
        dd->start_block = 1 - dd->start_block;
        dd->regs[DD_ASIC_CUR_SECTOR] = 1;
        dd->regs[DD_ASIC_BM_STATUS_CTL] &= ~DD_BM_STATUS_BLOCK;
        dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_DATA_RQ;
      }
      // quit writing after second block
      else {
        dd_write_sector(dd);
        dd->regs[DD_ASIC_CUR_SECTOR] += 1;
        dd->regs[DD_ASIC_BM_STATUS_CTL] &= ~DD_BM_STATUS_RUNNING;
      }
    } else {
      assert(0 && "DD write sector overrun");
    }
    dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_BM_INT;
    signal_dd_interrupt(dd->bus->vr4300);
  }

  // if we aren't writing, we're doing a read BM mode 1

  // track 6 fails to read on retail units
  if (dd->retail &&
      ((dd->regs[DD_ASIC_CUR_TK] & 0xFFF) == 6) && (dd->start_block == 0)) {
    // fail read LBA 12 if retail drive
    dd->regs[DD_ASIC_CMD_STATUS] &= ~DD_STATUS_DATA_RQ;
    dd->regs[DD_ASIC_BM_STATUS_CTL] |= DD_BM_STATUS_MICRO;
  }

  // data sectors: read into buffer and signal interrupt
  else if (dd->regs[DD_ASIC_CUR_SECTOR] < SECTORS_PER_BLOCK) {
    dd_read_sector(dd);
    dd->regs[DD_ASIC_CUR_SECTOR] += 1;
    dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_DATA_RQ;
  }

  // C2 sectors: do nothing since they're always loaded with 0's
  else if (dd->regs[DD_ASIC_CUR_SECTOR] < SECTORS_PER_BLOCK + 4) {
    dd->regs[DD_ASIC_CUR_SECTOR] += 1;
    if (dd->regs[DD_ASIC_CUR_SECTOR] == SECTORS_PER_BLOCK + 4)
      dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_C2_XFER;
  }

  // gap sector
  else if (dd->regs[DD_ASIC_CUR_SECTOR] == SECTORS_PER_BLOCK + 4) {
    if (dd->regs[DD_ASIC_BM_STATUS_CTL] & DD_BM_STATUS_BLOCK) {
      dd->start_block = 1 - dd->start_block;
      dd->regs[DD_ASIC_CUR_SECTOR] = 0;
      dd->regs[DD_ASIC_BM_STATUS_CTL] &= ~DD_BM_STATUS_BLOCK;
    } else {
      dd->regs[DD_ASIC_BM_STATUS_CTL] &= ~DD_BM_STATUS_RUNNING;
    }
  } else {
    assert(0 && "DD read sector overrun");
  }

  dd->regs[DD_ASIC_CMD_STATUS] |= DD_STATUS_BM_INT;
  signal_dd_interrupt(dd->bus->vr4300);
}

void dd_write_sector(struct dd_controller *dd) {
  // TODO actually write data
  /*
  uint32_t offset = dd->track_offset +
    dd->start_block * SECTORS_PER_BLOCK * zone_sec_size[dd->zone] +
    dd->regs[DD_ASIC_CUR_SECTOR] * zone_sec_size[dd->zone];

  memcpy(dd->ds_buffer, dd->rom + offset, zone_sec_size[dd->zone]);
  */
}

void dd_read_sector(struct dd_controller *dd) {
  uint32_t offset = dd->track_offset +
    dd->start_block * SECTORS_PER_BLOCK * zone_sec_size[dd->zone] +
    dd->regs[DD_ASIC_CUR_SECTOR] * zone_sec_size[dd->zone];

  memcpy(dd->ds_buffer, dd->rom + offset, zone_sec_size[dd->zone]);
}

// This magic brought to you by Happy_
void set_offset(struct dd_controller *dd) {
  uint16_t head   = (dd->regs[DD_ASIC_CUR_TK] & 0x1000) >> 9;
  uint16_t track  = dd->regs[DD_ASIC_CUR_TK] & 0xFFF;
  uint16_t tr_off = 0;

  static const uint32_t start_offset[16] = {
    0x00000000, 0x005F15E0, 0x00B79D00, 0x010801A0,
    0x01523720, 0x01963D80, 0x01D414C0, 0x020BBCE0,
    0x023196E0, 0x028A1E00, 0x02DF5DC0, 0x03299340,
    0x036D99A0, 0x03AB70E0, 0x03E31900, 0x04149200
  };

  if (track >= 0x425) {
    dd->zone = 7 + head;
    tr_off = track - 0x425;
  } else if (track >= 0x390) {
    dd->zone = 6 + head;
    tr_off = track - 0x390;
  } else if (track >= 0x2FB) {
    dd->zone = 5 + head;
    tr_off = track - 0x2FB;
  } else if (track >= 0x266) {
    dd->zone = 4 + head;
    tr_off = track - 0x266;
  } else if (track >= 0x1D1) {
    dd->zone = 3 + head;
    tr_off = track - 0x1D1;
  } else if (track >= 0x13C) {
    dd->zone = 2 + head;
    tr_off = track - 0x13C;
  } else if (track >= 0x9E) {
    dd->zone = 1 + head;
    tr_off = track - 0x9E;
  } else {
    dd->zone = 0 + head;
    tr_off = track;
  }

  dd->track_offset = start_offset[dd->zone] +
    tr_off * zone_sec_size[dd->zone] * SECTORS_PER_BLOCK * BLOCKS_PER_TRACK;
}

void get_dd_time(uint8_t *out) {
  struct time_stamp now;
  get_local_time(&now);

  out[0] = byte2bcd(now.year);
  out[1] = byte2bcd(now.month);
  out[2] = byte2bcd(now.day);
  out[3] = byte2bcd(now.hour);
  out[4] = byte2bcd(now.min);
  out[5] = byte2bcd(now.sec);

}

#define COUNT_OF(x) ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))

const struct dd_variant *dd_identify_variant(struct rom_file *ipl) {
  static struct dd_variant variants[] = {
    {
      "Japanese Retail (v1.2)",
      0xDD,
      { 0xbf, 0x86, 0x19, 0x22, 0xdc, 0xb7, 0x8c, 0x31, 0x63, 0x60,
        0xe3, 0xe7, 0x42, 0xf4, 0xf7, 0x0f, 0xf6, 0x3c, 0x9b, 0xc3, },
    }, {
      "USA Retail Prototype",
      0xDE,
      { 0x3c, 0x5b, 0x93, 0xca, 0x23, 0x15, 0x50, 0xc6, 0x86, 0x93,
        0xa1, 0x4f, 0x03, 0xce, 0xa8, 0xd5, 0xdb, 0xd1, 0xbe, 0x9e, },
    }, {
      "Japanese Dev (v1.0) [DOES NOT BOOT]",
      0xDD,
      { 0x58, 0x67, 0x0c, 0x00, 0x63, 0x79, 0x3a, 0x8f, 0x3b, 0xe9,
        0x57, 0xd7, 0x1d, 0x93, 0x7b, 0x61, 0x88, 0x29, 0xba, 0x9e, },
    }, {
      "Japanese Dev (v1.1)",
      0xDD,
      { 0xb3, 0xe2, 0x6d, 0xbb, 0x4e, 0x94, 0x5f, 0x78, 0xc9, 0x18,
        0xfa, 0xbc, 0x5b, 0x9e, 0x60, 0xfc, 0xf2, 0x62, 0xc4, 0x7b, },
    }, {
      "Japanese TOOL",
      0xDD,
      { 0x10, 0xc4, 0x17, 0x3c, 0x2a, 0x7e, 0xb0, 0x9c, 0x65, 0x79,
        0x81, 0x8f, 0x72, 0xef, 0x18, 0xfa, 0x0b, 0x6d, 0x32, 0xde, },
    },
  };
  static struct dd_variant unknown = { "Unknown", 0xDD, { 0, } };

  unsigned long i;
  uint8_t sha1_calc[20];
  struct dd_variant *variant = NULL;

  if (ipl == NULL || ipl->ptr == NULL)
    return NULL;
  if (ipl->size != 0x400000)
    return &unknown;

  sha1(ipl->ptr, ipl->size, sha1_calc);

  for (i = 0; i < COUNT_OF(variants); ++i) {
    if (memcmp(sha1_calc, variants[i].sha1, SHA1_SIZE) == 0) {
      variant = &variants[i];
      break;
    }
  }

  if (variant == NULL)
    variant = &unknown;

  return variant;
}