File: taxonomy.h

package info (click to toggle)
centrifuge 1.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 11,864 kB
  • sloc: cpp: 51,936; perl: 1,919; python: 1,538; makefile: 618; sh: 352
file content (351 lines) | stat: -rw-r--r-- 11,008 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * taxonomy.h
 *
 *  Created on: Feb 10, 2016
 *      Author: fbreitwieser
 */

#ifndef TAXONOMY_H_
#define TAXONOMY_H_

#include<map>
#include<utility>
#include<string>

enum {
    RANK_UNKNOWN = 0,
    RANK_STRAIN,
    RANK_SPECIES,
    RANK_GENUS,
    RANK_FAMILY,
    RANK_ORDER,
    RANK_CLASS,
    RANK_PHYLUM,
    RANK_KINGDOM,
    RANK_DOMAIN,
    RANK_FORMA,
    RANK_INFRA_CLASS,
    RANK_INFRA_ORDER,
    RANK_PARV_ORDER,
    RANK_SUB_CLASS,
    RANK_SUB_FAMILY,
    RANK_SUB_GENUS,
    RANK_SUB_KINGDOM,
    RANK_SUB_ORDER,
    RANK_SUB_PHYLUM,
    RANK_SUB_SPECIES,
    RANK_SUB_TRIBE,
    RANK_SUPER_CLASS,
    RANK_SUPER_FAMILY,
    RANK_SUPER_KINGDOM,
    RANK_SUPER_ORDER,
    RANK_SUPER_PHYLUM,
    RANK_TRIBE,
    RANK_VARIETAS,
    RANK_LIFE,
    RANK_MAX
};

extern uint8_t tax_rank_num[RANK_MAX];

struct TaxonomyNode {
    uint64_t parent_tid;
    uint8_t  rank;
    uint8_t  leaf;

    TaxonomyNode(uint64_t _parent_tid, uint8_t  _rank, uint8_t _leaf):
    	parent_tid(_parent_tid), rank(_rank), leaf(_leaf) {};

    TaxonomyNode(): parent_tid(0), rank(RANK_UNKNOWN), leaf(false) {};
};

struct TaxonomyPathTable {
    static const size_t nranks = 10;

    map<uint64_t, uint32_t> tid_to_pid;  // from taxonomic ID to path ID
    ELList<uint64_t> paths;

    static uint8_t rank_to_pathID(uint8_t rank) {
        switch(rank) {
            case RANK_STRAIN:
            case RANK_SUB_SPECIES:
                return 0;
            case RANK_SPECIES:
                return 1;
            case RANK_GENUS:
                return 2;
            case RANK_FAMILY:
                return 3;
            case RANK_ORDER:
                return 4;
            case RANK_CLASS:
                return 5;
            case RANK_PHYLUM:
                return 6;
            case RANK_KINGDOM:
                return 7;
            case RANK_SUPER_KINGDOM:
                return 8;
            case RANK_DOMAIN:
                return 9;
            default:
                return std::numeric_limits<uint8_t>::max();
        }
    }

    void buildPaths(const EList<pair<string, uint64_t> >& uid_to_tid,
                    const std::map<uint64_t, TaxonomyNode>& tree)
    {
        map<uint32_t, uint32_t> rank_map;
        rank_map[RANK_STRAIN]        = 0;
        rank_map[RANK_SUB_SPECIES]   = 0;
        rank_map[RANK_SPECIES]       = 1;
        rank_map[RANK_GENUS]         = 2;
        rank_map[RANK_FAMILY]        = 3;
        rank_map[RANK_ORDER]         = 4;
        rank_map[RANK_CLASS]         = 5;
        rank_map[RANK_PHYLUM]        = 6;
        rank_map[RANK_KINGDOM]       = 7;
        rank_map[RANK_SUPER_KINGDOM] = 8;
        rank_map[RANK_DOMAIN]        = 9;

        tid_to_pid.clear();
        paths.clear();
        for(size_t i = 0; i < uid_to_tid.size(); i++) {
            uint64_t tid = uid_to_tid[i].second;
            if(tid_to_pid.find(tid) != tid_to_pid.end())
                continue;
            if(tree.find(tid) == tree.end())
                continue;
            tid_to_pid[tid] = (uint32_t)paths.size();
            paths.expand();
            EList<uint64_t>& path = paths.back();
            path.resizeExact(nranks);
            path.fillZero();
            bool first = true;
            while(true) {
                std::map<uint64_t, TaxonomyNode>::const_iterator itr = tree.find(tid);
                if(itr == tree.end()) {
                    break;
                }
                const TaxonomyNode& node = itr->second;
                uint32_t rank = std::numeric_limits<uint32_t>::max();
                if(first && node.rank == RANK_UNKNOWN) {
                    rank = rank_map[RANK_STRAIN];
                } else if(rank_map.find(node.rank) != rank_map.end()) {
                    rank = rank_map[node.rank];
                }
                if(rank < path.size() && path[rank] == 0) {
                    path[rank] = tid;
                }

                first = false;
                if(node.parent_tid == tid) {
                    break;
                }
                tid = node.parent_tid;
            }
        }
    }

    void getPath(uint64_t tid, EList<uint64_t>& path) const {
        map<uint64_t, uint32_t>::const_iterator itr = tid_to_pid.find(tid);
        if(itr != tid_to_pid.end()) {
            uint32_t pid = itr->second;
            assert_lt(pid, paths.size());
            path = paths[pid];
        } else {
            path.clear();
        }
    }
};

typedef std::map<uint64_t, TaxonomyNode> TaxonomyTree;

inline static void initial_tax_rank_num() {
    uint8_t rank = 0;
    
    tax_rank_num[RANK_SUB_SPECIES] = rank;
    tax_rank_num[RANK_STRAIN] = rank++;
    
    tax_rank_num[RANK_SPECIES] = rank++;
    
    tax_rank_num[RANK_SUB_GENUS] = rank;
    tax_rank_num[RANK_GENUS] = rank++;
    
    tax_rank_num[RANK_SUB_FAMILY] = rank;
    tax_rank_num[RANK_FAMILY] = rank;
    tax_rank_num[RANK_SUPER_FAMILY] = rank++;
    
    tax_rank_num[RANK_SUB_ORDER] = rank;
    tax_rank_num[RANK_INFRA_ORDER] = rank;
    tax_rank_num[RANK_PARV_ORDER] = rank;
    tax_rank_num[RANK_ORDER] = rank;
    tax_rank_num[RANK_SUPER_ORDER] = rank++;
    
    tax_rank_num[RANK_INFRA_CLASS] = rank;
    tax_rank_num[RANK_SUB_CLASS] = rank;
    tax_rank_num[RANK_CLASS] = rank;
    tax_rank_num[RANK_SUPER_CLASS] = rank++;
    
    tax_rank_num[RANK_SUB_PHYLUM] = rank;
    tax_rank_num[RANK_PHYLUM] = rank;
    tax_rank_num[RANK_SUPER_PHYLUM] = rank++;
    
    tax_rank_num[RANK_SUB_KINGDOM] = rank;
    tax_rank_num[RANK_KINGDOM] = rank;
    tax_rank_num[RANK_SUPER_KINGDOM] = rank++;
    
    tax_rank_num[RANK_DOMAIN] = rank;
    tax_rank_num[RANK_FORMA] = rank;
    tax_rank_num[RANK_SUB_TRIBE] = rank;
    tax_rank_num[RANK_TRIBE] = rank;
    tax_rank_num[RANK_VARIETAS] = rank;
    tax_rank_num[RANK_UNKNOWN] = rank;
}

inline static const char* get_tax_rank_string(uint8_t rank) {
    switch(rank) {
        case RANK_STRAIN:        return "strain";
        case RANK_SPECIES:       return "species";
        case RANK_GENUS:         return "genus";
        case RANK_FAMILY:        return "family";
        case RANK_ORDER:         return "order";
        case RANK_CLASS:         return "class";
        case RANK_PHYLUM:        return "phylum";
        case RANK_KINGDOM:       return "kingdom";
        case RANK_FORMA:         return "forma";
        case RANK_INFRA_CLASS:   return "infraclass";
        case RANK_INFRA_ORDER:   return "infraorder";
        case RANK_PARV_ORDER:    return "parvorder";
        case RANK_SUB_CLASS:     return "subclass";
        case RANK_SUB_FAMILY:    return "subfamily";
        case RANK_SUB_GENUS:     return "subgenus";
        case RANK_SUB_KINGDOM:   return "subkingdom";
        case RANK_SUB_ORDER:     return "suborder";
        case RANK_SUB_PHYLUM:    return "subphylum";
        case RANK_SUB_SPECIES:   return "subspecies";
        case RANK_SUB_TRIBE:     return "subtribe";
        case RANK_SUPER_CLASS:   return "superclass";
        case RANK_SUPER_FAMILY:  return "superfamily";
        case RANK_SUPER_KINGDOM: return "superkingdom";
        case RANK_SUPER_ORDER:   return "superorder";
        case RANK_SUPER_PHYLUM:  return "superphylum";
        case RANK_TRIBE:         return "tribe";
        case RANK_VARIETAS:      return "varietas";
        case RANK_LIFE:          return "life";
        default:                 return "no rank";
    };
}

inline static uint8_t get_tax_rank_id(const char* rank) {
    if(strcmp(rank, "strain") == 0) {
        return RANK_STRAIN;
    } else if(strcmp(rank, "species") == 0) {
        return RANK_SPECIES;
    } else if(strcmp(rank, "genus") == 0) {
        return RANK_GENUS;
    } else if(strcmp(rank, "family") == 0) {
        return RANK_FAMILY;
    } else if(strcmp(rank, "order") == 0) {
        return RANK_ORDER;
    } else if(strcmp(rank, "class") == 0) {
        return RANK_CLASS;
    } else if(strcmp(rank, "phylum") == 0) {
        return RANK_PHYLUM;
    } else if(strcmp(rank, "kingdom") == 0) {
        return RANK_KINGDOM;
    } else if(strcmp(rank, "forma") == 0) {
        return RANK_FORMA;
    } else if(strcmp(rank, "infraclass") == 0) {
        return RANK_INFRA_CLASS;
    } else if(strcmp(rank, "infraorder") == 0) {
        return RANK_INFRA_ORDER;
    } else if(strcmp(rank, "parvorder") == 0) {
        return RANK_PARV_ORDER;
    } else if(strcmp(rank, "subclass") == 0) {
        return RANK_SUB_CLASS;
    } else if(strcmp(rank, "subfamily") == 0) {
        return RANK_SUB_FAMILY;
    } else if(strcmp(rank, "subgenus") == 0) {
        return RANK_SUB_GENUS;
    } else if(strcmp(rank, "subkingdom") == 0) {
        return RANK_SUB_KINGDOM;
    } else if(strcmp(rank, "suborder") == 0) {
        return RANK_SUB_ORDER;
    } else if(strcmp(rank, "subphylum") == 0) {
        return RANK_SUB_PHYLUM;
    } else if(strcmp(rank, "subspecies") == 0) {
        return RANK_SUB_SPECIES;
    } else if(strcmp(rank, "subtribe") == 0) {
        return RANK_SUB_TRIBE;
    } else if(strcmp(rank, "superclass") == 0) {
        return RANK_SUPER_CLASS;
    } else if(strcmp(rank, "superfamily") == 0) {
        return RANK_SUPER_FAMILY;
    } else if(strcmp(rank, "superkingdom") == 0) {
        return RANK_SUPER_KINGDOM;
    } else if(strcmp(rank, "superorder") == 0) {
        return RANK_SUPER_ORDER;
    } else if(strcmp(rank, "superphylum") == 0) {
        return RANK_SUPER_PHYLUM;
    } else if(strcmp(rank, "tribe") == 0) {
        return RANK_TRIBE;
    } else if(strcmp(rank, "varietas") == 0) {
        return RANK_VARIETAS;
    } else if(strcmp(rank, "life") == 0) {
        return RANK_LIFE;
    } else {
        return RANK_UNKNOWN;
    }
}

inline static uint64_t get_taxid_at_parent_rank(const TaxonomyTree& tree, uint64_t taxid, uint8_t at_rank) {
	while (true) {
		TaxonomyTree::const_iterator itr = tree.find(taxid);
		if(itr == tree.end()) {
			break;
		}
		const TaxonomyNode& node = itr->second;

		if (node.rank == at_rank) {
			return taxid;
		} else if (node.rank > at_rank || node.parent_tid == taxid) {
			return 0;
		}

		taxid = node.parent_tid;
	}
	return 0;
}

inline static TaxonomyTree read_taxonomy_tree(string taxonomy_fname) {
	TaxonomyTree tree;
	ifstream taxonomy_file(taxonomy_fname.c_str(), ios::in);
	if(taxonomy_file.is_open()) {
		char line[1024];
		while(!taxonomy_file.eof()) {
			line[0] = 0;
			taxonomy_file.getline(line, sizeof(line));
			if(line[0] == 0 || line[0] == '#') continue;
			istringstream cline(line);
			uint64_t tid, parent_tid;
			char dummy; string rank_string;
			cline >> tid >> dummy >> parent_tid >> dummy >> rank_string;
			if(tree.find(tid) != tree.end()) {
				cerr << "Warning: " << tid << " already has a parent!" << endl;
				continue;
			}

			tree[tid] = TaxonomyNode(parent_tid, get_tax_rank_id(rank_string.c_str()), false);
		}
		taxonomy_file.close();
	} else {
		cerr << "Error: " << taxonomy_fname << " doesn't exist!" << endl;
		throw 1;
	}
	return tree;
}


#endif /* TAXONOMY_H_ */