1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
|
/*
* Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ALIGNER_CACHE_H_
#define ALIGNER_CACHE_H_
/**
* CACHEING
*
* By caching the results of some alignment sub-problems, we hope to
* enable a "fast path" for read alignment whereby answers are mostly
* looked up rather than calculated from scratch. This is particularly
* effective when the input is sorted or otherwise grouped in a way
* that brings together reads with (at least some) seed sequences in
* common.
*
* But the cache is also where results are held, regardless of whether
* the results are maintained & re-used across reads.
*
* The cache consists of two linked potions:
*
* 1. A multimap from seed strings (i.e. read substrings) to reference strings
* that are within some edit distance (roughly speaking). This is the "seed
* multimap".
*
* Key: Read substring (2-bit-per-base encoded + length)
* Value: Set of reference substrings (i.e. keys into the suffix
* array multimap).
*
* 2. A multimap from reference strings to the corresponding elements of the
* suffix array. Elements are filled in with reference-offset info as it's
* calculated. This is the "suffix array multimap"
*
* Key: Reference substring (2-bit-per-base encoded + length)
* Value: (a) top from BWT, (b) length of range, (c) offset of first
* range element in
*
* For both multimaps, we use a combo Red-Black tree and EList. The payload in
* the Red-Black tree nodes points to a range in the EList.
*/
#include <iostream>
#include "ds.h"
#include "read.h"
#include "threading.h"
#include "mem_ids.h"
#include "simple_func.h"
#include "btypes.h"
#define CACHE_PAGE_SZ (16 * 1024)
typedef PListSlice<TIndexOffU, CACHE_PAGE_SZ> TSlice;
/**
* Key for the query multimap: the read substring and its length.
*/
struct QKey {
/**
* Initialize invalid QKey.
*/
QKey() { reset(); }
/**
* Initialize QKey from DNA string.
*/
QKey(const BTDnaString& s ASSERT_ONLY(, BTDnaString& tmp)) {
init(s ASSERT_ONLY(, tmp));
}
/**
* Initialize QKey from DNA string. Rightmost character is placed in the
* least significant bitpair.
*/
bool init(
const BTDnaString& s
ASSERT_ONLY(, BTDnaString& tmp))
{
seq = 0;
len = (uint32_t)s.length();
ASSERT_ONLY(tmp.clear());
if(len > 32) {
len = 0xffffffff;
return false; // wasn't cacheable
} else {
// Rightmost char of 's' goes in the least significant bitpair
for(size_t i = 0; i < 32 && i < s.length(); i++) {
int c = (int)s.get(i);
assert_range(0, 4, c);
if(c == 4) {
len = 0xffffffff;
return false;
}
seq = (seq << 2) | s.get(i);
}
ASSERT_ONLY(toString(tmp));
assert(sstr_eq(tmp, s));
assert_leq(len, 32);
return true; // was cacheable
}
}
/**
* Convert this key to a DNA string.
*/
void toString(BTDnaString& s) {
s.resize(len);
uint64_t sq = seq;
for(int i = (len)-1; i >= 0; i--) {
s.set((uint32_t)(sq & 3), i);
sq >>= 2;
}
}
/**
* Return true iff the read substring is cacheable.
*/
bool cacheable() const { return len != 0xffffffff; }
/**
* Reset to uninitialized state.
*/
void reset() { seq = 0; len = 0xffffffff; }
/**
* True -> my key is less than the given key.
*/
bool operator<(const QKey& o) const {
return seq < o.seq || (seq == o.seq && len < o.len);
}
/**
* True -> my key is greater than the given key.
*/
bool operator>(const QKey& o) const {
return !(*this < o || *this == o);
}
/**
* True -> my key is equal to the given key.
*/
bool operator==(const QKey& o) const {
return seq == o.seq && len == o.len;
}
/**
* True -> my key is not equal to the given key.
*/
bool operator!=(const QKey& o) const {
return !(*this == o);
}
#ifndef NDEBUG
/**
* Check that this is a valid, initialized QKey.
*/
bool repOk() const {
return len != 0xffffffff;
}
#endif
uint64_t seq; // sequence
uint32_t len; // length of sequence
};
template <typename index_t>
class AlignmentCache;
/**
* Payload for the query multimap: a range of elements in the reference
* string list.
*/
template <typename index_t>
class QVal {
public:
QVal() { reset(); }
/**
* Return the offset of the first reference substring in the qlist.
*/
index_t offset() const { return i_; }
/**
* Return the number of reference substrings associated with a read
* substring.
*/
index_t numRanges() const {
assert(valid());
return rangen_;
}
/**
* Return the number of elements associated with all associated
* reference substrings.
*/
index_t numElts() const {
assert(valid());
return eltn_;
}
/**
* Return true iff the read substring is not associated with any
* reference substrings.
*/
bool empty() const {
assert(valid());
return numRanges() == 0;
}
/**
* Return true iff the QVal is valid.
*/
bool valid() const { return rangen_ != (index_t)OFF_MASK; }
/**
* Reset to invalid state.
*/
void reset() {
i_ = 0; rangen_ = eltn_ = (index_t)OFF_MASK;
}
/**
* Initialize Qval.
*/
void init(index_t i, index_t ranges, index_t elts) {
i_ = i; rangen_ = ranges; eltn_ = elts;
}
/**
* Tally another range with given number of elements.
*/
void addRange(index_t numElts) {
rangen_++;
eltn_ += numElts;
}
#ifndef NDEBUG
/**
* Check that this QVal is internally consistent and consistent
* with the contents of the given cache.
*/
bool repOk(const AlignmentCache<index_t>& ac) const;
#endif
protected:
index_t i_; // idx of first elt in qlist
index_t rangen_; // # ranges (= # associated reference substrings)
index_t eltn_; // # elements (total)
};
/**
* Key for the suffix array multimap: the reference substring and its
* length. Same as QKey so I typedef it.
*/
typedef QKey SAKey;
/**
* Payload for the suffix array multimap: (a) the top element of the
* range in BWT, (b) the offset of the first elt in the salist, (c)
* length of the range.
*/
template <typename index_t>
struct SAVal {
SAVal() : topf(), topb(), i(), len(OFF_MASK) { }
/**
* Return true iff the SAVal is valid.
*/
bool valid() { return len != (index_t)OFF_MASK; }
#ifndef NDEBUG
/**
* Check that this SAVal is internally consistent and consistent
* with the contents of the given cache.
*/
bool repOk(const AlignmentCache<index_t>& ac) const;
#endif
/**
* Initialize the SAVal.
*/
void init(
index_t tf,
index_t tb,
index_t ii,
index_t ln)
{
topf = tf;
topb = tb;
i = ii;
len = ln;
}
index_t topf; // top in BWT
index_t topb; // top in BWT'
index_t i; // idx of first elt in salist
index_t len; // length of range
};
/**
* One data structure that encapsulates all of the cached information
* associated with a particular reference substring. This is useful
* for summarizing what info should be added to the cache for a partial
* alignment.
*/
template <typename index_t>
class SATuple {
public:
SATuple() { reset(); };
SATuple(SAKey k, index_t tf, index_t tb, TSlice o) {
init(k, tf, tb, o);
}
void init(SAKey k, index_t tf, index_t tb, TSlice o) {
key = k; topf = tf; topb = tb; offs = o;
}
/**
* Initialize this SATuple from a subrange of the SATuple 'src'.
*/
void init(const SATuple& src, index_t first, index_t last) {
assert_neq((index_t)OFF_MASK, src.topb);
key = src.key;
topf = (index_t)(src.topf + first);
topb = (index_t)OFF_MASK; // unknown!
offs.init(src.offs, first, last);
}
#ifndef NDEBUG
/**
* Check that this SATuple is internally consistent and that its
* PListSlice is consistent with its backing PList.
*/
bool repOk() const {
assert(offs.repOk());
return true;
}
#endif
/**
* Function for ordering SATuples. This is used when prioritizing which to
* explore first when extending seed hits into full alignments. Smaller
* ranges get higher priority and we use 'top' to break ties, though any
* way of breaking a tie would be fine.
*/
bool operator<(const SATuple& o) const {
if(offs.size() < o.offs.size()) {
return true;
}
if(offs.size() > o.offs.size()) {
return false;
}
return topf < o.topf;
}
bool operator>(const SATuple& o) const {
if(offs.size() < o.offs.size()) {
return false;
}
if(offs.size() > o.offs.size()) {
return true;
}
return topf > o.topf;
}
bool operator==(const SATuple& o) const {
return key == o.key && topf == o.topf && topb == o.topb && offs == o.offs;
}
void reset() { topf = topb = (index_t)OFF_MASK; offs.reset(); }
/**
* Set the length to be at most the original length.
*/
void setLength(index_t nlen) {
assert_leq(nlen, offs.size());
offs.setLength(nlen);
}
/**
* Return the number of times this reference substring occurs in the
* reference, which is also the size of the 'offs' TSlice.
*/
index_t size() const { return (index_t)offs.size(); }
// bot/length of SA range equals offs.size()
SAKey key; // sequence key
index_t topf; // top in BWT index
index_t topb; // top in BWT' index
TSlice offs; // offsets
};
/**
* Encapsulate the data structures and routines that constitute a
* particular cache, i.e., a particular stratum of the cache system,
* which might comprise many strata.
*
* Each thread has a "current-read" AlignmentCache which is used to
* build and store subproblem results as alignment is performed. When
* we're finished with a read, we might copy the cached results for
* that read (and perhaps a bundle of other recently-aligned reads) to
* a higher-level "across-read" cache. Higher-level caches may or may
* not be shared among threads.
*
* A cache consists chiefly of two multimaps, each implemented as a
* Red-Black tree map backed by an EList. A 'version' counter is
* incremented every time the cache is cleared.
*/
template <typename index_t>
class AlignmentCache {
typedef RedBlackNode<QKey, QVal<index_t> > QNode;
typedef RedBlackNode<SAKey, SAVal<index_t> > SANode;
typedef PList<SAKey, CACHE_PAGE_SZ> TQList;
typedef PList<index_t, CACHE_PAGE_SZ> TSAList;
public:
AlignmentCache(
uint64_t bytes,
bool shared) :
pool_(bytes, CACHE_PAGE_SZ, CA_CAT),
qmap_(CACHE_PAGE_SZ, CA_CAT),
qlist_(CA_CAT),
samap_(CACHE_PAGE_SZ, CA_CAT),
salist_(CA_CAT),
shared_(shared),
mutex_m(),
version_(0)
{
}
/**
* Given a QVal, populate the given EList of SATuples with records
* describing all of the cached information about the QVal's
* reference substrings.
*/
template <int S>
void queryQval(
const QVal<index_t>& qv,
EList<SATuple<index_t>, S>& satups,
index_t& nrange,
index_t& nelt,
bool getLock = true)
{
ThreadSafe ts(lockPtr(), shared_ && getLock);
assert(qv.repOk(*this));
const index_t refi = qv.offset();
const index_t reff = refi + qv.numRanges();
// For each reference sequence sufficiently similar to the
// query sequence in the QKey...
for(index_t i = refi; i < reff; i++) {
// Get corresponding SAKey, containing similar reference
// sequence & length
SAKey sak = qlist_.get(i);
// Shouldn't have identical keys in qlist_
assert(i == refi || qlist_.get(i) != qlist_.get(i-1));
// Get corresponding SANode
SANode *n = samap_.lookup(sak);
assert(n != NULL);
const SAVal<index_t>& sav = n->payload;
assert(sav.repOk(*this));
if(sav.len > 0) {
nrange++;
satups.expand();
satups.back().init(sak, sav.topf, sav.topb, TSlice(salist_, sav.i, sav.len));
nelt += sav.len;
#ifndef NDEBUG
// Shouldn't add consecutive identical entries too satups
if(i > refi) {
const SATuple<index_t> b1 = satups.back();
const SATuple<index_t> b2 = satups[satups.size()-2];
assert(b1.key != b2.key || b1.topf != b2.topf || b1.offs != b2.offs);
}
#endif
}
}
}
/**
* Return true iff the cache has no entries in it.
*/
bool empty() const {
bool ret = qmap_.empty();
assert(!ret || qlist_.empty());
assert(!ret || samap_.empty());
assert(!ret || salist_.empty());
return ret;
}
/**
* Add a new query key ('qk'), usually a 2-bit encoded substring of
* the read) as the key in a new Red-Black node in the qmap and
* return a pointer to the node's QVal.
*
* The expectation is that the caller is about to set about finding
* associated reference substrings, and that there will be future
* calls to addOnTheFly to add associations to reference substrings
* found.
*/
QVal<index_t>* add(
const QKey& qk,
bool *added,
bool getLock = true)
{
ThreadSafe ts(lockPtr(), shared_ && getLock);
assert(qk.cacheable());
QNode *n = qmap_.add(pool(), qk, added);
return (n != NULL ? &n->payload : NULL);
}
/**
* Add a new association between a read sequnce ('seq') and a
* reference sequence ('')
*/
bool addOnTheFly(
QVal<index_t>& qv, // qval that points to the range of reference substrings
const SAKey& sak, // the key holding the reference substring
index_t topf, // top range elt in BWT index
index_t botf, // bottom range elt in BWT index
index_t topb, // top range elt in BWT' index
index_t botb, // bottom range elt in BWT' index
bool getLock = true);
/**
* Clear the cache, i.e. turn it over. All HitGens referring to
* ranges in this cache will become invalid and the corresponding
* reads will have to be re-aligned.
*/
void clear(bool getLock = true) {
ThreadSafe ts(lockPtr(), shared_ && getLock);
pool_.clear();
qmap_.clear();
qlist_.clear();
samap_.clear();
salist_.clear();
version_++;
}
/**
* Return the number of keys in the query multimap.
*/
index_t qNumKeys() const { return (index_t)qmap_.size(); }
/**
* Return the number of keys in the suffix array multimap.
*/
index_t saNumKeys() const { return (index_t)samap_.size(); }
/**
* Return the number of elements in the reference substring list.
*/
index_t qSize() const { return (index_t)qlist_.size(); }
/**
* Return the number of elements in the SA range list.
*/
index_t saSize() const { return (index_t)salist_.size(); }
/**
* Return the pool.
*/
Pool& pool() { return pool_; }
/**
* Return the lock object.
*/
MUTEX_T& lock() {
return mutex_m;
}
/**
* Return a const pointer to the lock object. This allows us to
* write const member functions that grab the lock.
*/
MUTEX_T* lockPtr() const {
return const_cast<MUTEX_T*>(&mutex_m);
}
/**
* Return true iff this cache is shared among threads.
*/
bool shared() const { return shared_; }
/**
* Return the current "version" of the cache, i.e. the total number
* of times it has turned over since its creation.
*/
uint32_t version() const { return version_; }
protected:
Pool pool_; // dispenses memory pages
RedBlack<QKey, QVal<index_t> > qmap_; // map from query substrings to reference substrings
TQList qlist_; // list of reference substrings
RedBlack<SAKey, SAVal<index_t> > samap_; // map from reference substrings to SA ranges
TSAList salist_; // list of SA ranges
bool shared_; // true -> this cache is global
MUTEX_T mutex_m; // mutex used for syncronization in case the the cache is shared.
uint32_t version_; // cache version
};
/**
* Interface used to query and update a pair of caches: one thread-
* local and unsynchronized, another shared and synchronized. One or
* both can be NULL.
*/
template <typename index_t>
class AlignmentCacheIface {
public:
AlignmentCacheIface(
AlignmentCache<index_t> *current,
AlignmentCache<index_t> *local,
AlignmentCache<index_t> *shared) :
qk_(),
qv_(NULL),
cacheable_(false),
rangen_(0),
eltsn_(0),
current_(current),
local_(local),
shared_(shared)
{
assert(current_ != NULL);
}
#if 0
/**
* Query the relevant set of caches, looking for a QVal to go with
* the provided QKey. If the QVal is found in a cache other than
* the current-read cache, it is copied into the current-read cache
* first and the QVal pointer for the current-read cache is
* returned. This function never returns a pointer from any cache
* other than the current-read cache. If the QVal could not be
* found in any cache OR if the QVal was found in a cache other
* than the current-read cache but could not be copied into the
* current-read cache, NULL is returned.
*/
QVal* queryCopy(const QKey& qk, bool getLock = true) {
assert(qk.cacheable());
AlignmentCache* caches[3] = { current_, local_, shared_ };
for(int i = 0; i < 3; i++) {
if(caches[i] == NULL) continue;
QVal* qv = caches[i]->query(qk, getLock);
if(qv != NULL) {
if(i == 0) return qv;
if(!current_->copy(qk, *qv, *caches[i], getLock)) {
// Exhausted memory in the current cache while
// attempting to copy in the qk
return NULL;
}
QVal* curqv = current_->query(qk, getLock);
assert(curqv != NULL);
return curqv;
}
}
return NULL;
}
/**
* Query the relevant set of caches, looking for a QVal to go with
* the provided QKey. If a QVal is found and which is non-NULL,
* *which is set to 0 if the qval was found in the current-read
* cache, 1 if it was found in the local across-read cache, and 2
* if it was found in the shared across-read cache.
*/
inline QVal* query(
const QKey& qk,
AlignmentCache** which,
bool getLock = true)
{
assert(qk.cacheable());
AlignmentCache* caches[3] = { current_, local_, shared_ };
for(int i = 0; i < 3; i++) {
if(caches[i] == NULL) continue;
QVal* qv = caches[i]->query(qk, getLock);
if(qv != NULL) {
if(which != NULL) *which = caches[i];
return qv;
}
}
return NULL;
}
#endif
/**
* This function is called whenever we start to align a new read or
* read substring. We make key for it and store the key in qk_.
* If the sequence is uncacheable, we don't actually add it to the
* map but the corresponding reference substrings are still added
* to the qlist_.
*
* Returns:
* -1 if out of memory
* 0 if key was found in cache
* 1 if key was not found in cache (and there's enough memory to
* add a new key)
*/
int beginAlign(
const BTDnaString& seq,
const BTString& qual,
QVal<index_t>& qv, // out: filled in if we find it in the cache
bool getLock = true)
{
assert(repOk());
qk_.init(seq ASSERT_ONLY(, tmpdnastr_));
//if(qk_.cacheable() && (qv_ = current_->query(qk_, getLock)) != NULL) {
// // qv_ holds the answer
// assert(qv_->valid());
// qv = *qv_;
// resetRead();
// return 1; // found in cache
//} else
if(qk_.cacheable()) {
// Make a QNode for this key and possibly add the QNode to the
// Red-Black map; but if 'seq' isn't cacheable, just create the
// QNode (without adding it to the map).
qv_ = current_->add(qk_, &cacheable_, getLock);
} else {
qv_ = &qvbuf_;
}
if(qv_ == NULL) {
resetRead();
return -1; // Not in memory
}
qv_->reset();
return 0; // Need to search for it
}
ASSERT_ONLY(BTDnaString tmpdnastr_);
/**
* Called when is finished aligning a read (and so is finished
* adding associated reference strings). Returns a copy of the
* final QVal object and resets the alignment state of the
* current-read cache.
*
* Also, if the alignment is cacheable, it commits it to the next
* cache up in the cache hierarchy.
*/
QVal<index_t> finishAlign(bool getLock = true) {
if(!qv_->valid()) {
qv_->init(0, 0, 0);
}
// Copy this pointer because we're about to reset the qv_ field
// to NULL
QVal<index_t>* qv = qv_;
// Commit the contents of the current-read cache to the next
// cache up in the hierarchy.
// If qk is cacheable, then it must be in the cache
#if 0
if(qk_.cacheable()) {
AlignmentCache* caches[3] = { current_, local_, shared_ };
ASSERT_ONLY(AlignmentCache* which);
ASSERT_ONLY(QVal* qv2 = query(qk_, &which, true));
assert(qv2 == qv);
assert(which == current_);
for(int i = 1; i < 3; i++) {
if(caches[i] != NULL) {
// Copy this key/value pair to the to the higher
// level cache and, if its memory is exhausted,
// clear the cache and try again.
caches[i]->clearCopy(qk_, *qv_, *current_, getLock);
break;
}
}
}
#endif
// Reset the state in this iface in preparation for the next
// alignment.
resetRead();
assert(repOk());
return *qv;
}
/**
* A call to this member indicates that the caller has finished
* with the last read (if any) and is ready to work on the next.
* This gives the cache a chance to reset some of its state if
* necessary.
*/
void nextRead() {
current_->clear();
resetRead();
assert(!aligning());
}
/**
* Return true iff we're in the middle of aligning a sequence.
*/
bool aligning() const {
return qv_ != NULL;
}
/**
* Clears both the local and shared caches.
*/
void clear() {
if(current_ != NULL) current_->clear();
if(local_ != NULL) local_->clear();
if(shared_ != NULL) shared_->clear();
}
/**
* Add an alignment to the running list of alignments being
* compiled for the current read in the local cache.
*/
bool addOnTheFly(
const BTDnaString& rfseq, // reference sequence close to read seq
index_t topf, // top in BWT index
index_t botf, // bot in BWT index
index_t topb, // top in BWT' index
index_t botb, // bot in BWT' index
bool getLock = true) // true -> lock is not held by caller
{
assert(aligning());
assert(repOk());
ASSERT_ONLY(BTDnaString tmp);
SAKey sak(rfseq ASSERT_ONLY(, tmp));
//assert(sak.cacheable());
if(current_->addOnTheFly((*qv_), sak, topf, botf, topb, botb, getLock)) {
rangen_++;
eltsn_ += (botf-topf);
return true;
}
return false;
}
/**
* Given a QVal, populate the given EList of SATuples with records
* describing all of the cached information about the QVal's
* reference substrings.
*/
template<int S>
void queryQval(
const QVal<index_t>& qv,
EList<SATuple<index_t>, S>& satups,
index_t& nrange,
index_t& nelt,
bool getLock = true)
{
current_->queryQval(qv, satups, nrange, nelt, getLock);
}
/**
* Return a pointer to the current-read cache object.
*/
const AlignmentCache<index_t>* currentCache() const { return current_; }
index_t curNumRanges() const { return rangen_; }
index_t curNumElts() const { return eltsn_; }
#ifndef NDEBUG
/**
* Check that AlignmentCacheIface is internally consistent.
*/
bool repOk() const {
assert(current_ != NULL);
assert_geq(eltsn_, rangen_);
if(qv_ == NULL) {
assert_eq(0, rangen_);
assert_eq(0, eltsn_);
}
return true;
}
#endif
/**
* Return the alignment cache for the current read.
*/
const AlignmentCache<index_t>& current() {
return *current_;
}
protected:
/**
* Reset fields encoding info about the in-process read.
*/
void resetRead() {
cacheable_ = false;
rangen_ = eltsn_ = 0;
qv_ = NULL;
}
QKey qk_; // key representation for current read substring
QVal<index_t> *qv_; // pointer to value representation for current read substring
QVal<index_t> qvbuf_; // buffer for when key is uncacheable but we need a qv
bool cacheable_; // true iff the read substring currently being aligned is cacheable
index_t rangen_; // number of ranges since last alignment job began
index_t eltsn_; // number of elements since last alignment job began
AlignmentCache<index_t> *current_; // cache dedicated to the current read
AlignmentCache<index_t> *local_; // local, unsynchronized cache
AlignmentCache<index_t> *shared_; // shared, synchronized cache
};
#ifndef NDEBUG
/**
* Check that this QVal is internally consistent and consistent
* with the contents of the given cache.
*/
template <typename index_t>
bool QVal<index_t>::repOk(const AlignmentCache<index_t>& ac) const {
if(rangen_ > 0) {
assert_lt(i_, ac.qSize());
assert_leq(i_ + rangen_, ac.qSize());
}
assert_geq(eltn_, rangen_);
return true;
}
#endif
#ifndef NDEBUG
/**
* Check that this SAVal is internally consistent and consistent
* with the contents of the given cache.
*/
template <typename index_t>
bool SAVal<index_t>::repOk(const AlignmentCache<index_t>& ac) const {
assert(len == 0 || i < ac.saSize());
assert_leq(i + len, ac.saSize());
return true;
}
#endif
/**
* Add a new association between a read sequnce ('seq') and a
* reference sequence ('')
*/
template <typename index_t>
bool AlignmentCache<index_t>::addOnTheFly(
QVal<index_t>& qv, // qval that points to the range of reference substrings
const SAKey& sak, // the key holding the reference substring
index_t topf, // top range elt in BWT index
index_t botf, // bottom range elt in BWT index
index_t topb, // top range elt in BWT' index
index_t botb, // bottom range elt in BWT' index
bool getLock)
{
ThreadSafe ts(lockPtr(), shared_ && getLock);
bool added = true;
// If this is the first reference sequence we're associating with
// the query sequence, initialize the QVal.
if(!qv.valid()) {
qv.init((index_t)qlist_.size(), 0, 0);
}
qv.addRange(botf-topf); // update tally for # ranges and # elts
if(!qlist_.add(pool(), sak)) {
return false; // Exhausted pool memory
}
#ifndef NDEBUG
for(index_t i = qv.offset(); i < qlist_.size(); i++) {
if(i > qv.offset()) {
assert(qlist_.get(i) != qlist_.get(i-1));
}
}
#endif
assert_eq(qv.offset() + qv.numRanges(), qlist_.size());
SANode *s = samap_.add(pool(), sak, &added);
if(s == NULL) {
return false; // Exhausted pool memory
}
assert(s->key.repOk());
if(added) {
s->payload.i = (index_t)salist_.size();
s->payload.len = botf - topf;
s->payload.topf = topf;
s->payload.topb = topb;
for(size_t j = 0; j < (botf-topf); j++) {
if(!salist_.add(pool(), (index_t)0xffffffff)) {
// Change the payload's len field
s->payload.len = (uint32_t)j;
return false; // Exhausted pool memory
}
}
assert(s->payload.repOk(*this));
}
// Now that we know all allocations have succeeded, we can do a few final
// updates
return true;
}
#endif /*ALIGNER_CACHE_H_*/
|