1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
|
/*
* Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#include "dp_framer.h"
using namespace std;
/**
* Set up variables that describe the shape of a dynamic programming matrix to
* be filled in. The matrix is built around the diagonal containing the seed
* hit: the "seed diagonal". The N diagonals to the right of the seed diagonal
* are the "RHS gap" diagonals, where N is the maximum number of read or
* reference gaps permitted (whichever is larger). The N diagonals to the left
* of the seed diagonal are the "LHS gap" diagonals.
*
* The way the rectangle is currently formulated, there are another N diagonals
* to the left of the "LHS gap" diagonals called the "LHS extra diagonals". It
* might also be possible to split the "extra diagonals" into two subsets and
* place them both to the left of the LHS gap diagonals and to the right of the
* RHS gap diagonals.
*
* The purpose of arranging and these groupings of diagonals is that a subset
* of them, the "core diagonals", can now be considered "covered." By
* "covered" I mean that any alignment that overlaps a cell in any of the core
* diagonals cannot possibly overlap another, higher-scoring alignment that
* falls partially outside the rectangle.
*
* Say the read is 5 characters long, the maximum number of read or ref gaps is
* 2, and the seed hit puts the main diagonal at offset 10 in the reference.
* The larger rectangle explored looks like this:
*
* off=10, maxgap=2
*
* Ref 1
* off: 67890123456 0: seed diagonal
* **OO0oo++---- o: "RHS gap" diagonals
* -**OO0oo++--- O: "LHS gap" diagonals
* --**OO0oo++-- *: "LHS extra" diagonals
* ---**OO0oo++- +: "RHS extra" diagonals
* ----**OO0oo++ -: cells that can't possibly be involved in a valid
* alignment that overlaps one of the core diagonals
*
* The "core diagonals" are marked with 0's, O's or o's.
*
* A caveat is that, for performance reasons, we place an upper limit on N -
* the maximum number of read or reference gaps. It is constrained to be no
* greater than 'maxgap'. This means that in some situations, we may report an
* alignment that spuriously trumps a better alignment that falls partially
* outside the rectangle. Also, we may fail to find a valid alignment with
* more than 'maxgap' gaps.
*
* Another issue is trimming: if the seed hit is sufficiently close to one or
* both ends of the reference sequence, and either (a) overhang is not
* permitted, or (b) the number of Ns permitted is less than the number of
* columns that overhang the reference, then we want to exclude the trimmed
* columns from the rectangle.
*
* We need to return enough information so that downstream routines can fully
* understand the shape of the rectangle, which diagonals are which (esp. which
* are the "core" diagonals, since we needn't examine any more seed hits from
* those columns in the future), and how the rectangle is trimmed. The
* information returned should be compatible with the sort of information
* returned by the routines that set up rectangles for mate finding.
*/
bool DynProgFramer::frameSeedExtensionRect(
int64_t off, // ref offset implied by seed hit assuming no gaps
size_t rdlen, // length of read sequence used in DP table (so len
// of +1 nucleotide sequence for colorspace reads)
int64_t reflen, // length of reference sequence aligned to
size_t maxrdgap, // max # of read gaps permitted in opp mate alignment
size_t maxrfgap, // max # of ref gaps permitted in opp mate alignment
int64_t maxns, // # Ns permitted
size_t maxhalf, // max width in either direction
DPRect& rect) // out: DP rectangle
{
assert_gt(rdlen, 0);
assert_gt(reflen, 0);
// Set N, the maximum number of reference or read gaps permitted, whichever
// is larger. Also, enforce ceiling: can't be larger than 'maxhalf'.
size_t maxgap = max(maxrdgap, maxrfgap);
maxgap = min(maxgap, maxhalf);
// Leave room for "LHS gap" and "LHS extra" diagonals
int64_t refl = off - 2 * maxgap; // inclusive
// Leave room for "RHS gap" and "RHS extra" diagonals
int64_t refr = off + (rdlen - 1) + 2 * maxgap; // inclusive
size_t triml = 0, trimr = 0;
// Check if we have to trim to fit the extents of the reference
if(trimToRef_) {
maxns = 0; // no leeway
} else if(maxns == (int64_t)rdlen) {
maxns--;
}
// Trim from RHS of rectangle
if(refr >= reflen + maxns) {
trimr = (size_t)(refr - (reflen + maxns - 1));
}
// Trim from LHS of rectangle
if(refl < -maxns) {
triml = (size_t)(-refl) - (size_t)maxns;
}
rect.refl_pretrim = refl;
rect.refr_pretrim = refr;
rect.refl = refl + triml;
rect.refr = refr - trimr;
rect.triml = triml;
rect.trimr = trimr;
rect.maxgap = maxgap;
// Remember which diagonals are "core" as offsets from the LHS of the
// untrimmed rectangle
rect.corel = maxgap;
rect.corer = rect.corel + 2 * maxgap; // inclusive
assert(rect.repOk());
return !rect.entirelyTrimmed();
}
/**
* Set up variables that describe the shape of a dynamic programming matrix to
* be filled in. The matrix is built around the diagonals that terminate in
* the range of columns where the RHS of the opposite mate must fall in order
* to satisfy the fragment-length constraint. These are the "mate" diagonals
* and they also happen to be the "core" diagonals in this case.
*
* The N diagonals to the right of the mate diagonals are the "RHS gap"
* diagonals, where N is the maximum number of read or reference gaps permitted
* (whichever is larger). The N diagonals to the left of the mate diagonals
* are the "LHS gap" diagonals.
*
* The purpose of arranging and these groupings of diagonals is that a subset
* of them, the "core diagonals", can now be considered "covered." By
* "covered" I mean that any alignment that overlaps a cell in any of the core
* diagonals cannot possibly overlap another, higher-scoring alignment that
* falls partially outside the rectangle.
*
* |Anchor|
* o---------OO0000000000000oo------ 0: mate diagonal (also core diags!)
* -o---------OO0000000000000oo----- o: "RHS gap" diagonals
* --o---------OO0000000000000oo---- O: "LHS gap" diagonals
* ---oo--------OO0000000000000oo--- *: "LHS extra" diagonals
* -----o--------OO0000000000000oo-- -: cells that can't possibly be
* ------o--------OO0000000000000oo- involved in a valid alignment that
* -------o--------OO0000000000000oo overlaps one of the core diagonals
* XXXXXXXXXXXXX
* | RHS Range |
* ^ ^
* rl rr
*
* The "core diagonals" are marked with 0s.
*
* A caveat is that, for performance reasons, we place an upper limit on N -
* the maximum number of read or reference gaps. It is constrained to be no
* greater than 'maxgap'. This means that in some situations, we may report an
* alignment that spuriously trumps a better alignment that falls partially
* outside the rectangle. Also, we may fail to find a valid alignment with
* more than 'maxgap' gaps.
*
* Another issue is trimming: if the seed hit is sufficiently close to one or
* both ends of the reference sequence, and either (a) overhang is not
* permitted, or (b) the number of Ns permitted is less than the number of
* columns that overhang the reference, then we want to exclude the trimmed
* columns from the rectangle.
*/
bool DynProgFramer::frameFindMateAnchorLeftRect(
int64_t ll, // leftmost Watson off for LHS of opp alignment
int64_t lr, // rightmost Watson off for LHS of opp alignment
int64_t rl, // leftmost Watson off for RHS of opp alignment
int64_t rr, // rightmost Watson off for RHS of opp alignment
size_t rdlen, // length of opposite mate
int64_t reflen, // length of reference sequence aligned to
size_t maxrdgap, // max # of read gaps permitted in opp mate alignment
size_t maxrfgap, // max # of ref gaps permitted in opp mate alignment
int64_t maxns, // max # ns permitted in the alignment
size_t maxhalf, // max width in either direction
DPRect& rect) // out: DP rectangle
const
{
assert_geq(lr, ll); // LHS rightmost must be >= LHS leftmost
assert_geq(rr, rl); // RHS rightmost must be >= RHS leftmost
assert_geq(rr, lr); // RHS rightmost must be >= LHS rightmost
assert_geq(rl, ll); // RHS leftmost must be >= LHS leftmost
assert_gt(rdlen, 0);
assert_gt(reflen, 0);
size_t triml = 0, trimr = 0;
size_t maxgap = max(maxrdgap, maxrfgap);
maxgap = max(maxgap, maxhalf);
// Amount of padding we have to add to account for the fact that alignments
// ending between en_left/en_right might start in various columns in the
// first row
int64_t pad_left = maxgap;
int64_t pad_right = maxgap;
int64_t en_left = rl;
int64_t en_right = rr;
int64_t st_left = en_left - (rdlen-1);
ASSERT_ONLY(int64_t st_right = en_right - (rdlen-1));
int64_t en_right_pad = en_right + pad_right;
ASSERT_ONLY(int64_t en_left_pad = en_left - pad_left);
ASSERT_ONLY(int64_t st_right_pad = st_right + pad_right);
int64_t st_left_pad = st_left - pad_left;
assert_leq(st_left, en_left);
assert_geq(en_right, st_right);
assert_leq(st_left_pad, en_left_pad);
assert_geq(en_right_pad, st_right_pad);
int64_t refl = st_left_pad;
int64_t refr = en_right_pad;
if(trimToRef_) {
maxns = 0;
} else if(maxns == (int64_t)rdlen) {
maxns--;
}
// Trim from the RHS of the rectangle?
if(refr >= reflen + maxns) {
trimr = (size_t)(refr - (reflen + maxns - 1));
}
// Trim from the LHS of the rectangle?
if(refl < -maxns) {
triml = (size_t)(-refl) - (size_t)maxns;
}
size_t width = (size_t)(refr - refl + 1);
rect.refl_pretrim = refl;
rect.refr_pretrim = refr;
rect.refl = refl + triml;
rect.refr = refr - trimr;
rect.triml = triml;
rect.trimr = trimr;
rect.maxgap = maxgap;
rect.corel = maxgap;
rect.corer = width - maxgap - 1; // inclusive
assert(rect.repOk());
return !rect.entirelyTrimmed();
}
/**
* Set up variables that describe the shape of a dynamic programming matrix to
* be filled in. The matrix is built around the diagonals that begin in the
* range of columns where the LHS of the opposite mate must fall in order to
* satisfy the fragment-length constraint. These are the "mate" diagonals and
* they also happen to be the "core" diagonals in this case.
*
* The N diagonals to the right of the mate diagonals are the "RHS gap"
* diagonals, where N is the maximum number of read or reference gaps permitted
* (whichever is larger). The N diagonals to the left of the mate diagonals
* are the "LHS gap" diagonals.
*
* The purpose of arranging and these groupings of diagonals is that a subset
* of them, the "core diagonals", can now be considered "covered." By
* "covered" I mean that any alignment that overlaps a cell in any of the core
* diagonals cannot possibly overlap another, higher-scoring alignment that
* falls partially outside the rectangle.
*
* ll lr
* v v
* | LHS Range |
* XXXXXXXXXXXXX |Anchor|
* OO0000000000000oo--------o-------- 0: mate diagonal (also core diags!)
* -OO0000000000000oo--------o------- o: "RHS gap" diagonals
* --OO0000000000000oo--------o------ O: "LHS gap" diagonals
* ---OO0000000000000oo--------oo---- *: "LHS extra" diagonals
* ----OO0000000000000oo---------o--- -: cells that can't possibly be
* -----OO0000000000000oo---------o-- involved in a valid alignment that
* ------OO0000000000000oo---------o- overlaps one of the core diagonals
*
* The "core diagonals" are marked with 0s.
*
* A caveat is that, for performance reasons, we place an upper limit on N -
* the maximum number of read or reference gaps. It is constrained to be no
* greater than 'maxgap'. This means that in some situations, we may report an
* alignment that spuriously trumps a better alignment that falls partially
* outside the rectangle. Also, we may fail to find a valid alignment with
* more than 'maxgap' gaps.
*
* Another issue is trimming: if the seed hit is sufficiently close to one or
* both ends of the reference sequence, and either (a) overhang is not
* permitted, or (b) the number of Ns permitted is less than the number of
* columns that overhang the reference, then we want to exclude the trimmed
* columns from the rectangle.
*/
bool DynProgFramer::frameFindMateAnchorRightRect(
int64_t ll, // leftmost Watson off for LHS of opp alignment
int64_t lr, // rightmost Watson off for LHS of opp alignment
int64_t rl, // leftmost Watson off for RHS of opp alignment
int64_t rr, // rightmost Watson off for RHS of opp alignment
size_t rdlen, // length of opposite mate
int64_t reflen, // length of reference sequence aligned to
size_t maxrdgap, // max # of read gaps permitted in opp mate alignment
size_t maxrfgap, // max # of ref gaps permitted in opp mate alignment
int64_t maxns, // max # ns permitted in the alignment
size_t maxhalf, // max width in either direction
DPRect& rect) // out: DP rectangle
const
{
assert_geq(lr, ll);
assert_geq(rr, rl);
assert_geq(rr, lr);
assert_geq(rl, ll);
assert_gt(rdlen, 0);
assert_gt(reflen, 0);
size_t triml = 0, trimr = 0;
size_t maxgap = max(maxrdgap, maxrfgap);
maxgap = max(maxgap, maxhalf);
int64_t pad_left = maxgap;
int64_t pad_right = maxgap;
int64_t st_left = ll;
int64_t st_right = lr;
ASSERT_ONLY(int64_t en_left = st_left + (rdlen-1));
int64_t en_right = st_right + (rdlen-1);
int64_t en_right_pad = en_right + pad_right;
ASSERT_ONLY(int64_t en_left_pad = en_left - pad_left);
ASSERT_ONLY(int64_t st_right_pad = st_right + pad_right);
int64_t st_left_pad = st_left - pad_left;
assert_leq(st_left, en_left);
assert_geq(en_right, st_right);
assert_leq(st_left_pad, en_left_pad);
assert_geq(en_right_pad, st_right_pad);
// We have enough info to deduce where the boundaries of our rectangle
// should be. Finalize the boundaries, ignoring reference trimming for now
int64_t refl = st_left_pad;
int64_t refr = en_right_pad;
if(trimToRef_) {
maxns = 0;
} else if(maxns == (int64_t)rdlen) {
maxns--;
}
// Trim from the RHS of the rectangle?
if(refr >= reflen + maxns) {
trimr = (size_t)(refr - (reflen + maxns - 1));
}
// Trim from the LHS of the rectangle?
if(refl < -maxns) {
triml = (size_t)(-refl) - (size_t)maxns;
}
size_t width = (size_t)(refr - refl + 1);
rect.refl_pretrim = refl;
rect.refr_pretrim = refr;
rect.refl = refl + triml;
rect.refr = refr - trimr;
rect.triml = triml;
rect.trimr = trimr;
rect.maxgap = maxgap;
rect.corel = maxgap;
rect.corer = width - maxgap - 1; // inclusive
assert(rect.repOk());
return !rect.entirelyTrimmed();
}
#ifdef MAIN_DP_FRAMER
#include <iostream>
static void testCaseFindMateAnchorLeft(
const char *testName,
bool trimToRef,
int64_t ll,
int64_t lr,
int64_t rl,
int64_t rr,
size_t rdlen,
size_t reflen,
size_t maxrdgap,
size_t maxrfgap,
size_t ex_width,
size_t ex_solwidth,
size_t ex_trimup,
size_t ex_trimdn,
int64_t ex_refl,
int64_t ex_refr,
const char *ex_st, // string of '0'/'1' chars
const char *ex_en) // string of '0'/'1' chars
{
cerr << testName << "...";
DynProgFramer fr(trimToRef);
size_t width, solwidth;
int64_t refl, refr;
EList<bool> st, en;
size_t trimup, trimdn;
size_t maxhalf = 500;
size_t maxgaps = 0;
fr.frameFindMateAnchorLeft(
ll, // leftmost Watson off for LHS of opp alignment
lr, // rightmost Watson off for LHS of opp alignment
rl, // leftmost Watson off for RHS of opp alignment
rr, // rightmost Watson off for RHS of opp alignment
rdlen, // length of opposite mate
reflen, // length of reference sequence aligned to
maxrdgap, // max # of read gaps permitted in opp mate alignment
maxrfgap, // max # of ref gaps permitted in opp mate alignment
maxns, // max # Ns permitted
maxhalf, // max width in either direction
width, // out: calculated width stored here
maxgaps, // out: max # gaps
trimup, // out: number of bases trimmed from upstream end
trimdn, // out: number of bases trimmed from downstream end
refl, // out: ref pos of upper LHS of parallelogram
refr, // out: ref pos of lower RHS of parallelogram
st, // out: legal starting columns stored here
en); // out: legal ending columns stored here
assert_eq(ex_width, width);
assert_eq(ex_solwidth, solwidth);
assert_eq(ex_trimup, trimup);
assert_eq(ex_trimdn, trimdn);
assert_eq(ex_refl, refl);
assert_eq(ex_refr, refr);
for(size_t i = 0; i < width; i++) {
assert_eq((ex_st[i] == '1'), st[i]);
assert_eq((ex_en[i] == '1'), en[i]);
}
cerr << "PASSED" << endl;
}
static void testCaseFindMateAnchorRight(
const char *testName,
bool trimToRef,
int64_t ll,
int64_t lr,
int64_t rl,
int64_t rr,
size_t rdlen,
size_t reflen,
size_t maxrdgap,
size_t maxrfgap,
size_t ex_width,
size_t ex_solwidth,
size_t ex_trimup,
size_t ex_trimdn,
int64_t ex_refl,
int64_t ex_refr,
const char *ex_st, // string of '0'/'1' chars
const char *ex_en) // string of '0'/'1' chars
{
cerr << testName << "...";
DynProgFramer fr(trimToRef);
size_t width, solwidth;
size_t maxgaps;
int64_t refl, refr;
EList<bool> st, en;
size_t trimup, trimdn;
size_t maxhalf = 500;
fr.frameFindMateAnchorRight(
ll, // leftmost Watson off for LHS of opp alignment
lr, // rightmost Watson off for LHS of opp alignment
rl, // leftmost Watson off for RHS of opp alignment
rr, // rightmost Watson off for RHS of opp alignment
rdlen, // length of opposite mate
reflen, // length of reference sequence aligned to
maxrdgap, // max # of read gaps permitted in opp mate alignment
maxrfgap, // max # of ref gaps permitted in opp mate alignment
maxns, // max # Ns permitted
maxhalf, // max width in either direction
width, // out: calculated width stored here
maxgaps, // out: calcualted max # gaps
trimup, // out: number of bases trimmed from upstream end
trimdn, // out: number of bases trimmed from downstream end
refl, // out: ref pos of upper LHS of parallelogram
refr, // out: ref pos of lower RHS of parallelogram
st, // out: legal starting columns stored here
en); // out: legal ending columns stored here
assert_eq(ex_width, width);
assert_eq(ex_trimup, trimup);
assert_eq(ex_trimdn, trimdn);
assert_eq(ex_refl, refl);
assert_eq(ex_refr, refr);
for(size_t i = 0; i < width; i++) {
assert_eq((ex_st[i] == '1'), st[i]);
assert_eq((ex_en[i] == '1'), en[i]);
}
cerr << "PASSED" << endl;
}
int main(void) {
///////////////////////////
//
// ANCHOR ON THE LEFT
//
///////////////////////////
// -------------
// o o
// o o
// o o
// o o
// <<<------->>>
// 012345678901234567890
// 0 1 2
testCaseFindMateAnchorLeft(
"FindMateAnchorLeft1",
false, // trim to reference
3, // left offset of upper parallelogram extent
15, // right offset of upper parallelogram extent
10, // left offset of lower parallelogram extent
16, // right offset of lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
3, // max # of read gaps permitted in opp mate alignment
3, // max # of ref gaps permitted in opp mate alignment
13, // expected width
0, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
3, // ref offset of upstream column
19, // ref offset of downstream column
"1111111111111", // expected starting bools
"0001111111000"); // expected ending bools
// *******
// <<===-----
// o o
// o o
// o o
// o o
// <<=----->>
// *******
// 012345678901234567890
// 0 1 2
testCaseFindMateAnchorLeft(
"FindMateAnchorLeft2",
false, // trim to reference
9, // left offset of left upper parallelogram extent
14, // right offset of left upper parallelogram extent
10, // left offset of left lower parallelogram extent
15, // right offset of left lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
7, // expected width
3, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
7, // ref offset of upstream column
17, // ref offset of downstream column
"0011111", // expected starting bools
"1111100"); // expected ending bools
// *******
// <<===--->>
// o o
// o o
// o o
// o o
// o o
// <<=----->>
// *******
// 01234567890123456xxxx
// 0 1 2
testCaseFindMateAnchorLeft(
"FindMateAnchorLeft3",
true, // trim to reference
9, // left offset of left upper parallelogram extent
14, // right offset of left upper parallelogram extent
10, // left offset of left lower parallelogram extent
15, // right offset of left lower parallelogram extent
5, // length of opposite mate
17, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
7, // expected width
3, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
7, // ref offset of upstream column
17, // ref offset of downstream column
"0011111", // expected starting bools
"1111100"); // expected ending bools
// ******
// <<===-----
// o o
// o o
// o o
// o o
// <<=----=>>
// ******
// 012345678901234xxxxxx
// 0 1 2
testCaseFindMateAnchorLeft(
"FindMateAnchorLeft4",
true, // trim to reference
9, // left offset of left upper parallelogram extent
14, // right offset of left upper parallelogram extent
10, // left offset of left lower parallelogram extent
15, // right offset of left lower parallelogram extent
5, // length of opposite mate
15, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
6, // expected width
3, // expected # bases trimmed from upstream end
1, // expected # bases trimmed from downstream end
7, // ref offset of upstream column
16, // ref offset of downstream column
"001111", // expected starting bools
"111100"); // expected ending bools
// -1 0 2
// xxxxxxxxxx012345678xx
//
// *******
// <<===-----
// o o
// o o
// o o
// o o
// o o
// <<=----->>
// *******
//
// xxxxxxxxxx012345678xx
// -1 0 2
testCaseFindMateAnchorLeft(
"FindMateAnchorLeft5",
true, // trim to reference
1, // left offset of left upper parallelogram extent
7, // right offset of left upper parallelogram extent
2, // left offset of left lower parallelogram extent
7, // right offset of left lower parallelogram extent
5, // length of opposite mate
9, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
7, // expected width
3, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
-1, // ref offset of upstream column
9, // ref offset of downstream column
"0011111", // expected starting bools
"1111100"); // expected ending bools
// <<<<==-===>>
// o o
// o o
// o o
// o o
// <<<<------>>
// ******
// 012345678901234567890
// 0 1 2
testCaseFindMateAnchorLeft(
"FindMateAnchorLeft6",
false, // trim to reference
8, // left offset of left upper parallelogram extent
8, // right offset of left upper parallelogram extent
10, // left offset of left lower parallelogram extent
15, // right offset of left lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
4, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
6, // expected width
4, // expected # bases trimmed from upstream end
2, // expected # bases trimmed from downstream end
6, // ref offset of upstream column
15, // ref offset of downstream column
"001000", // expected starting bools
"111111"); // expected ending bools
///////////////////////////
//
// ANCHOR ON THE RIGHT
//
///////////////////////////
// <<<------->>>
// o o
// o o
// o o
// o o
// <<<------->>>
// 012345678901234567890123456789
// 0 1 2
testCaseFindMateAnchorRight(
"FindMateAnchorRight1",
false, // trim to reference
10, // left offset of left upper parallelogram extent
16, // right offset of left upper parallelogram extent
11, // left offset of left lower parallelogram extent
23, // right offset of left lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
3, // max # of read gaps permitted in opp mate alignment
3, // max # of ref gaps permitted in opp mate alignment
13, // expected width
0, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
7, // ref offset of upstream column
23, // ref offset of downstream column
"0001111111000", // expected starting bools
"1111111111111"); // expected ending bools
// 0 1 2
// 012345678901234567890
// *******
// <<------>>
// o o
// o o
// o o
// o o
// <<===--->>
// *******
// 012345678901234567890
// 0 1 2
testCaseFindMateAnchorRight(
"FindMateAnchorRight2",
false, // trim to reference
6, // left offset of left upper parallelogram extent
11, // right offset of left upper parallelogram extent
13, // left offset of left lower parallelogram extent
18, // right offset of left lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
7, // expected width
3, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
7, // ref offset of upstream column
17, // ref offset of downstream column
"1111100", // expected starting bools
"0011111"); // expected ending bools
// Reference trimming takes off the left_pad of the left mate
//
// *******
// <<------>>
// o o
// o o
// o o
// o o
// o o
// <<===--->>
// *******
// 0123456789012345678901234567890
// -1 0 1 2
testCaseFindMateAnchorRight(
"FindMateAnchorRight3",
true, // trim to reference
0, // left offset of left upper parallelogram extent
5, // right offset of left upper parallelogram extent
7, // left offset of left lower parallelogram extent
11, // right offset of left lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
7, // expected width
3, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
1, // ref offset of upstream column
11, // ref offset of downstream column
"1111100", // expected starting bools
"0011111"); // expected ending bools
// Reference trimming takes off the leftmost 5 positions of the left mate,
// and takes 1 from the right mate
//
// *****
// <<------>>
// o o
// o o
// o o
// o o
// o o
// <<===--->>
// *****
// 0987654321012345678901234567890
// -1 0 1 2
testCaseFindMateAnchorRight(
"FindMateAnchorRight4",
true, // trim to reference
-3, // left offset of left upper parallelogram extent
2, // right offset of left upper parallelogram extent
4, // left offset of left lower parallelogram extent
10, // right offset of left lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
5, // expected width
5, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
0, // ref offset of upstream column
8, // ref offset of downstream column
"11100", // expected starting bools
"11111"); // expected ending bools
// Reference trimming takes off the leftmost 5 positions of the left mate,
// and takes 1 from the left of the right mate. Also, it takes 2 from the
// right of the right mate.
//
// ***
// <<------>>
// o o
// o o
// o o
// o o
// o o
// <<===--->>
// ***
// 0987654321012345678901234567890
// -1 0 1 2
testCaseFindMateAnchorRight(
"FindMateAnchorRight5",
true, // trim to reference
-3, // left offset of left upper parallelogram extent
2, // right offset of left upper parallelogram extent
4, // left offset of left lower parallelogram extent
10, // right offset of left lower parallelogram extent
5, // length of opposite mate
7, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
3, // expected width
5, // expected # bases trimmed from upstream end
2, // expected # bases trimmed from downstream end
0, // ref offset of upstream column
6, // ref offset of downstream column
"111", // expected starting bools
"111"); // expected ending bools
// ******
// <<------>>>>
// o o
// o o
// o o
// o o
// <<====-=>>>>
// ******
// 012345678901234567890
// 0 1 2
testCaseFindMateAnchorRight(
"FindMateAnchorRight6",
false, // trim to reference
6, // left offset of left upper parallelogram extent
11, // right offset of left upper parallelogram extent
14, // left offset of left lower parallelogram extent
14, // right offset of left lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
4, // max # of read gaps permitted in opp mate alignment
2, // max # of ref gaps permitted in opp mate alignment
6, // expected width
2, // expected # bases trimmed from upstream end
4, // expected # bases trimmed from downstream end
6, // ref offset of upstream column
15, // ref offset of downstream column
"111111", // expected starting bools
"000010"); // expected ending bools
// ****
// <<<<==---->>
// o o
// o o
// o o
// o o
// o o
// <<<<====-=>>
// ****
// 012345678901234567890
// 0 1 2
testCaseFindMateAnchorRight(
"FindMateAnchorRight7",
false, // trim to reference
6, // left offset of left upper parallelogram extent
11, // right offset of left upper parallelogram extent
14, // left offset of left lower parallelogram extent
14, // right offset of left lower parallelogram extent
5, // length of opposite mate
30, // length of reference sequence aligned to
2, // max # of read gaps permitted in opp mate alignment
4, // max # of ref gaps permitted in opp mate alignment
4, // expected width
6, // expected # bases trimmed from upstream end
2, // expected # bases trimmed from downstream end
8, // ref offset of upstream column
15, // ref offset of downstream column
"1111", // expected starting bools
"0010"); // expected ending bools
testCaseFindMateAnchorRight(
"FindMateAnchorRight8",
true, // trim to reference
-37, // left offset of left upper parallelogram extent
13, // right offset of left upper parallelogram extent
-37, // left offset of left lower parallelogram extent
52, // right offset of left lower parallelogram extent
10, // length of opposite mate
53, // length of reference sequence aligned to
0, // max # of read gaps permitted in opp mate alignment
0, // max # of ref gaps permitted in opp mate alignment
14, // expected width
37, // expected # bases trimmed from upstream end
0, // expected # bases trimmed from downstream end
0, // ref offset of upstream column
22, // ref offset of downstream column
"11111111111111", // expected starting bools
"11111111111111");// expected ending bools
}
#endif /*def MAIN_DP_FRAMER*/
|