1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
/*
* Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef READ_H_
#define READ_H_
#include <stdint.h>
#include <sys/time.h>
#include "ds.h"
#include "sstring.h"
#include "filebuf.h"
#include "util.h"
enum rna_strandness_format {
RNA_STRANDNESS_UNKNOWN = 0,
RNA_STRANDNESS_F,
RNA_STRANDNESS_R,
RNA_STRANDNESS_FR,
RNA_STRANDNESS_RF
};
typedef uint64_t TReadId;
typedef size_t TReadOff;
typedef int64_t TAlScore;
class HitSet;
/**
* A buffer for keeping all relevant information about a single read.
*/
struct Read {
Read() { reset(); }
Read(const char *nm, const char *seq, const char *ql) { init(nm, seq, ql); }
void reset() {
rdid = 0;
endid = 0;
alts = 0;
trimmed5 = trimmed3 = 0;
readOrigBuf.clear();
patFw.clear();
patRc.clear();
qual.clear();
patFwRev.clear();
patRcRev.clear();
qualRev.clear();
name.clear();
for(int j = 0; j < 3; j++) {
altPatFw[j].clear();
altPatFwRev[j].clear();
altPatRc[j].clear();
altPatRcRev[j].clear();
altQual[j].clear();
altQualRev[j].clear();
}
color = fuzzy = false;
primer = '?';
trimc = '?';
filter = '?';
seed = 0;
ns_ = 0;
}
/**
* Finish initializing a new read.
*/
void finalize() {
for(size_t i = 0; i < patFw.length(); i++) {
if((int)patFw[i] > 3) {
ns_++;
}
}
constructRevComps();
constructReverses();
}
/**
* Simple init function, used for testing.
*/
void init(
const char *nm,
const char *seq,
const char *ql)
{
reset();
patFw.installChars(seq);
qual.install(ql);
for(size_t i = 0; i < patFw.length(); i++) {
if((int)patFw[i] > 3) {
ns_++;
}
}
constructRevComps();
constructReverses();
if(nm != NULL) name.install(nm);
}
/// Return true iff the read (pair) is empty
bool empty() const {
return patFw.empty();
}
/// Return length of the read in the buffer
size_t length() const {
return patFw.length();
}
/**
* Return the number of Ns in the read.
*/
size_t ns() const {
return ns_;
}
/**
* Construct reverse complement of the pattern and the fuzzy
* alternative patters. If read is in colorspace, just reverse
* them.
*/
void constructRevComps() {
if(color) {
patRc.installReverse(patFw);
for(int j = 0; j < alts; j++) {
altPatRc[j].installReverse(altPatFw[j]);
}
} else {
patRc.installReverseComp(patFw);
for(int j = 0; j < alts; j++) {
altPatRc[j].installReverseComp(altPatFw[j]);
}
}
}
/**
* Given patFw, patRc, and qual, construct the *Rev versions in
* place. Assumes constructRevComps() was called previously.
*/
void constructReverses() {
patFwRev.installReverse(patFw);
patRcRev.installReverse(patRc);
qualRev.installReverse(qual);
for(int j = 0; j < alts; j++) {
altPatFwRev[j].installReverse(altPatFw[j]);
altPatRcRev[j].installReverse(altPatRc[j]);
altQualRev[j].installReverse(altQual[j]);
}
}
/**
* Append a "/1" or "/2" string onto the end of the name buf if
* it's not already there.
*/
void fixMateName(int i) {
assert(i == 1 || i == 2);
size_t namelen = name.length();
bool append = false;
if(namelen < 2) {
// Name is too short to possibly have /1 or /2 on the end
append = true;
} else {
if(i == 1) {
// append = true iff mate name does not already end in /1
append =
name[namelen-2] != '/' ||
name[namelen-1] != '1';
} else {
// append = true iff mate name does not already end in /2
append =
name[namelen-2] != '/' ||
name[namelen-1] != '2';
}
}
if(append) {
name.append('/');
name.append("012"[i]);
}
}
/**
* Dump basic information about this read to the given ostream.
*/
void dump(std::ostream& os) const {
using namespace std;
os << name << ' ';
if(color) {
os << patFw.toZBufXForm("0123.");
} else {
os << patFw;
}
os << ' ';
// Print out the fuzzy alternative sequences
for(int j = 0; j < 3; j++) {
bool started = false;
if(!altQual[j].empty()) {
for(size_t i = 0; i < length(); i++) {
if(altQual[j][i] != '!') {
started = true;
}
if(started) {
if(altQual[j][i] == '!') {
os << '-';
} else {
if(color) {
os << "0123."[(int)altPatFw[j][i]];
} else {
os << altPatFw[j][i];
}
}
}
}
}
cout << " ";
}
os << qual.toZBuf() << " ";
// Print out the fuzzy alternative quality strings
for(int j = 0; j < 3; j++) {
bool started = false;
if(!altQual[j].empty()) {
for(size_t i = 0; i < length(); i++) {
if(altQual[j][i] != '!') {
started = true;
}
if(started) {
os << altQual[j][i];
}
}
}
if(j == 2) {
os << endl;
} else {
os << " ";
}
}
}
/**
* Check whether two reads are the same in the sense that they will
* lead to us finding the same set of alignments.
*/
static bool same(
const BTDnaString& seq1,
const BTString& qual1,
const BTDnaString& seq2,
const BTString& qual2,
bool qualitiesMatter)
{
if(seq1.length() != seq2.length()) {
return false;
}
for(size_t i = 0; i < seq1.length(); i++) {
if(seq1[i] != seq2[i]) return false;
}
if(qualitiesMatter) {
if(qual1.length() != qual2.length()) {
return false;
}
for(size_t i = 0; i < qual1.length(); i++) {
if(qual1[i] != qual2[i]) return false;
}
}
return true;
}
/**
* Get the nucleotide and quality value at the given offset from 5' end.
* If 'fw' is false, get the reverse complement.
*/
std::pair<int, int> get(TReadOff off5p, bool fw) const {
assert_lt(off5p, length());
int c = (int)patFw[off5p];
int q = qual[off5p];
assert_geq(q, 33);
return make_pair((!fw && c < 4) ? (c ^ 3) : c, q - 33);
}
/**
* Get the nucleotide at the given offset from 5' end.
* If 'fw' is false, get the reverse complement.
*/
int getc(TReadOff off5p, bool fw) const {
assert_lt(off5p, length());
int c = (int)patFw[off5p];
return (!fw && c < 4) ? (c ^ 3) : c;
}
/**
* Get the quality value at the given offset from 5' end.
*/
int getq(TReadOff off5p) const {
assert_lt(off5p, length());
int q = qual[off5p];
assert_geq(q, 33);
return q-33;
}
#ifndef NDEBUG
/**
* Check that read info is internally consistent.
*/
bool repOk() const {
if(patFw.empty()) return true;
assert_eq(qual.length(), patFw.length());
return true;
}
#endif
BTDnaString patFw; // forward-strand sequence
BTDnaString patRc; // reverse-complement sequence
BTString qual; // quality values
BTDnaString altPatFw[3];
BTDnaString altPatRc[3];
BTString altQual[3];
BTDnaString patFwRev;
BTDnaString patRcRev;
BTString qualRev;
BTDnaString altPatFwRev[3];
BTDnaString altPatRcRev[3];
BTString altQualRev[3];
// For remembering the exact input text used to define a read
SStringExpandable<char> readOrigBuf;
BTString name; // read name
TReadId rdid; // 0-based id based on pair's offset in read file(s)
TReadId endid; // 0-based id based on pair's offset in read file(s)
// and which mate ("end") this is
int mate; // 0 = single-end, 1 = mate1, 2 = mate2
uint32_t seed; // random seed
size_t ns_; // # Ns
int alts; // number of alternatives
bool fuzzy; // whether to employ fuzziness
bool color; // whether read is in color space
char primer; // primer base, for csfasta files
char trimc; // trimmed color, for csfasta files
char filter; // if read format permits filter char, set it here
int trimmed5; // amount actually trimmed off 5' end
int trimmed3; // amount actually trimmed off 3' end
HitSet *hitset; // holds previously-found hits; for chaining
};
/**
* A string of FmStringOps represent a string of tasks performed by the
* best-first alignment search. We model the search as a series of FM ops
* interspersed with reported alignments.
*/
struct FmStringOp {
bool alignment; // true -> found an alignment
TAlScore pen; // penalty of the FM op or alignment
size_t n; // number of FM ops (only relevant for non-alignment)
};
/**
* A string that summarizes the progress of an FM-index-assistet best-first
* search. Useful for trying to figure out what the aligner is spending its
* time doing for a given read.
*/
struct FmString {
/**
* Add one or more FM index ops to the op string
*/
void add(bool alignment, TAlScore pen, size_t nops) {
if(ops.empty() || ops.back().pen != pen) {
ops.expand();
ops.back().alignment = alignment;
ops.back().pen = pen;
ops.back().n = 0;
}
ops.back().n++;
}
/**
* Reset FmString to uninitialized state.
*/
void reset() {
pen = std::numeric_limits<TAlScore>::max();
ops.clear();
}
/**
* Print a :Z optional field where certain characters (whitespace, colon
* and percent) are escaped using % escapes.
*/
void print(BTString& o, char *buf) const {
for(size_t i = 0; i < ops.size(); i++) {
if(i > 0) {
o.append(';');
}
if(ops[i].alignment) {
o.append("A,");
itoa10(ops[i].pen, buf);
o.append(buf);
} else {
o.append("F,");
itoa10(ops[i].pen, buf); o.append(buf);
o.append(',');
itoa10(ops[i].n, buf); o.append(buf);
}
}
}
TAlScore pen; // current penalty
EList<FmStringOp> ops; // op string
};
/**
* Key per-read metrics. These are used for thresholds, allowing us to bail
* for unproductive reads. They also the basis of what's printed when the user
* specifies --read-times.
*/
struct PerReadMetrics {
PerReadMetrics() { reset(); }
void reset() {
nExIters =
nExDps = nExDpSuccs = nExDpFails =
nMateDps = nMateDpSuccs = nMateDpFails =
nExUgs = nExUgSuccs = nExUgFails =
nMateUgs = nMateUgSuccs = nMateUgFails =
nExEes = nExEeSuccs = nExEeFails =
nRedundants =
nEeFmops = nSdFmops = nExFmops =
nDpFail = nDpFailStreak = nDpLastSucc =
nUgFail = nUgFailStreak = nUgLastSucc =
nEeFail = nEeFailStreak = nEeLastSucc =
nFilt = 0;
nFtabs = 0;
nRedSkip = 0;
nRedFail = 0;
nRedIns = 0;
doFmString = false;
nSeedRanges = nSeedElts = 0;
nSeedRangesFw = nSeedEltsFw = 0;
nSeedRangesRc = nSeedEltsRc = 0;
seedMedian = seedMean = 0;
bestLtMinscMate1 =
bestLtMinscMate2 = std::numeric_limits<TAlScore>::min();
fmString.reset();
}
struct timeval tv_beg; // timer start to measure how long alignment takes
struct timezone tz_beg; // timer start to measure how long alignment takes
uint64_t nExIters; // iterations of seed hit extend loop
uint64_t nExDps; // # extend DPs run on this read
uint64_t nExDpSuccs; // # extend DPs run on this read
uint64_t nExDpFails; // # extend DPs run on this read
uint64_t nExUgs; // # extend ungapped alignments run on this read
uint64_t nExUgSuccs; // # extend ungapped alignments run on this read
uint64_t nExUgFails; // # extend ungapped alignments run on this read
uint64_t nExEes; // # extend ungapped alignments run on this read
uint64_t nExEeSuccs; // # extend ungapped alignments run on this read
uint64_t nExEeFails; // # extend ungapped alignments run on this read
uint64_t nMateDps; // # mate DPs run on this read
uint64_t nMateDpSuccs; // # mate DPs run on this read
uint64_t nMateDpFails; // # mate DPs run on this read
uint64_t nMateUgs; // # mate ungapped alignments run on this read
uint64_t nMateUgSuccs; // # mate ungapped alignments run on this read
uint64_t nMateUgFails; // # mate ungapped alignments run on this read
uint64_t nRedundants; // # redundant seed hits
uint64_t nSeedRanges; // # BW ranges found for seeds
uint64_t nSeedElts; // # BW elements found for seeds
uint64_t nSeedRangesFw; // # BW ranges found for seeds from fw read
uint64_t nSeedEltsFw; // # BW elements found for seeds from fw read
uint64_t nSeedRangesRc; // # BW ranges found for seeds from fw read
uint64_t nSeedEltsRc; // # BW elements found for seeds from fw read
uint64_t seedMedian; // median seed hit count
uint64_t seedMean; // rounded mean seed hit count
uint64_t nEeFmops; // FM Index ops for end-to-end alignment
uint64_t nSdFmops; // FM Index ops used to align seeds
uint64_t nExFmops; // FM Index ops used to resolve offsets
uint64_t nFtabs; // # ftab lookups
uint64_t nRedSkip; // # times redundant path was detected and aborted
uint64_t nRedFail; // # times a path was deemed non-redundant
uint64_t nRedIns; // # times a path was added to redundancy list
uint64_t nDpFail; // number of dp failures in a row up until now
uint64_t nDpFailStreak; // longest streak of dp failures
uint64_t nDpLastSucc; // index of last dp attempt that succeeded
uint64_t nUgFail; // number of ungap failures in a row up until now
uint64_t nUgFailStreak; // longest streak of ungap failures
uint64_t nUgLastSucc; // index of last ungap attempt that succeeded
uint64_t nEeFail; // number of ungap failures in a row up until now
uint64_t nEeFailStreak; // longest streak of ungap failures
uint64_t nEeLastSucc; // index of last ungap attempt that succeeded
uint64_t nFilt; // # mates filtered
TAlScore bestLtMinscMate1; // best invalid score observed for mate 1
TAlScore bestLtMinscMate2; // best invalid score observed for mate 2
// For collecting information to go into an FM string
bool doFmString;
FmString fmString;
};
#endif /*READ_H_*/
|