1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
.. _sec-bibliography:
============
Bibliography
============
Background Reading
==================
For a short but informative introduction to the subject we recommend
the booklet by [Madsen]_ . For a general introduction to non-linear
optimization we recommend [NocedalWright]_. [Bjorck]_ remains the
seminal reference on least squares problems. [TrefethenBau]_ is our
favorite text on introductory numerical linear algebra. [Triggs]_
provides a thorough coverage of the bundle adjustment problem.
References
==========
.. [Agarwal] S. Agarwal, N. Snavely, S. M. Seitz and R. Szeliski,
**Bundle Adjustment in the Large**, *Proceedings of the European
Conference on Computer Vision*, pp. 29--42, 2010.
.. [Bjorck] A. Bjorck, **Numerical Methods for Least Squares
Problems**, SIAM, 1996
.. [Brown] D. C. Brown, **A solution to the general problem of
multiple station analytical stereo triangulation**, Technical
Report 43, Patrick Airforce Base, Florida, 1958.
.. [ByrdNocedal] R. H. Byrd, J. Nocedal, R. B. Schanbel,
**Representations of Quasi-Newton Matrices and their use in Limited
Memory Methods**, *Mathematical Programming* 63(4):129-156, 1994.
.. [ByrdSchnabel] R.H. Byrd, R.B. Schnabel, and G.A. Shultz, **Approximate
solution of the trust region problem by minimization over
two dimensional subspaces**, *Mathematical programming*,
40(1):247-263, 1988.
.. [Chen] Y. Chen, T. A. Davis, W. W. Hager, and
S. Rajamanickam, **Algorithm 887: CHOLMOD, Supernodal Sparse
Cholesky Factorization and Update/Downdate**, *TOMS*, 35(3), 2008.
.. [Conn] A.R. Conn, N.I.M. Gould, and P.L. Toint, **Trust region
methods**, *Society for Industrial Mathematics*, 2000.
.. [Dellaert] F. Dellaert, J. Carlson, V. Ila, K. Ni and C. E. Thorpe,
**Subgraph-preconditioned conjugate gradients for large scale SLAM**,
*International Conference on Intelligent Robots and Systems*, 2010.
.. [GolubPereyra] G.H. Golub and V. Pereyra, **The differentiation of
pseudo-inverses and nonlinear least squares problems whose
variables separate**, *SIAM Journal on numerical analysis*,
10(2):413-432, 1973.
.. [GouldScott] N. Gould and J. Scott, **The State-of-the-Art of
Preconditioners for Sparse Linear Least-Squares Problems**,
*ACM Trans. Math. Softw.*, 43(4), 2017.
.. [HartleyZisserman] R.I. Hartley & A. Zisserman, **Multiview
Geometry in Computer Vision**, Cambridge University Press, 2004.
.. [Hertzberg] C. Hertzberg, R. Wagner, U. Frese and L. Schroder,
**Integrating Generic Sensor Fusion Algorithms with Sound State
Representations through Encapsulation of Manifolds**, *Information
Fusion*, 14(1):57-77, 2013.
.. [KanataniMorris] K. Kanatani and D. D. Morris, **Gauges and gauge
transformations for uncertainty description of geometric structure
with indeterminacy**, *IEEE Transactions on Information Theory*
47(5):2017-2028, 2001.
.. [Keys] R. G. Keys, **Cubic convolution interpolation for digital
image processing**, *IEEE Trans. on Acoustics, Speech, and Signal
Processing*, 29(6), 1981.
.. [KushalAgarwal] A. Kushal and S. Agarwal, **Visibility based
preconditioning for bundle adjustment**, *In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition*, 2012.
.. [Kanzow] C. Kanzow, N. Yamashita and M. Fukushima,
**Levenberg-Marquardt methods with strong local convergence
properties for solving nonlinear equations with convex
constraints**, *Journal of Computational and Applied Mathematics*,
177(2):375-397, 2005.
.. [Levenberg] K. Levenberg, **A method for the solution of certain
nonlinear problems in least squares**, *Quart. Appl. Math*,
2(2):164-168, 1944.
.. [LiSaad] Na Li and Y. Saad, **MIQR: A multilevel incomplete qr
preconditioner for large sparse least squares problems**, *SIAM
Journal on Matrix Analysis and Applications*, 28(2):524-550, 2007.
.. [Madsen] K. Madsen, H.B. Nielsen, and O. Tingleff, **Methods for
nonlinear least squares problems**, 2004.
.. [Mandel] J. Mandel, **On block diagonal and Schur complement
preconditioning**, *Numer. Math.*, 58(1):79-93, 1990.
.. [Marquardt] D.W. Marquardt, **An algorithm for least squares
estimation of nonlinear parameters**, *J. SIAM*, 11(2):431-441,
1963.
.. [Mathew] T.P.A. Mathew, **Domain decomposition methods for the
numerical solution of partial differential equations**, Springer
Verlag, 2008.
.. [NashSofer] S.G. Nash and A. Sofer, **Assessing a search direction
within a truncated newton method**, *Operations Research Letters*,
9(4):219-221, 1990.
.. [Nocedal] J. Nocedal, **Updating Quasi-Newton Matrices with Limited
Storage**, *Mathematics of Computation*, 35(151): 773--782, 1980.
.. [NocedalWright] J. Nocedal & S. Wright, **Numerical Optimization**,
Springer, 2004.
.. [Oren] S. S. Oren, **Self-scaling Variable Metric (SSVM) Algorithms
Part II: Implementation and Experiments**, Management Science,
20(5), 863-874, 1974.
.. [Press] W. H. Press, S. A. Teukolsky, W. T. Vetterling
& B. P. Flannery, **Numerical Recipes**, Cambridge University
Press, 2007.
.. [Ridders] C. J. F. Ridders, **Accurate computation of F'(x) and
F'(x) F"(x)**, Advances in Engineering Software 4(2), 75-76, 1978.
.. [RuheWedin] A. Ruhe and P.Å. Wedin, **Algorithms for separable
nonlinear least squares problems**, Siam Review, 22(3):318-337,
1980.
.. [Saad] Y. Saad, **Iterative methods for sparse linear
systems**, SIAM, 2003.
.. [Simon] I. Simon, N. Snavely and S. M. Seitz, **Scene Summarization
for Online Image Collections**, *International Conference on Computer Vision*, 2007.
.. [Stigler] S. M. Stigler, **Gauss and the invention of least
squares**, *The Annals of Statistics*, 9(3):465-474, 1981.
.. [TenenbaumDirector] J. Tenenbaum & B. Director, **How Gauss
Determined the Orbit of Ceres**.
.. [TrefethenBau] L.N. Trefethen and D. Bau, **Numerical Linear
Algebra**, SIAM, 1997.
.. [Triggs] B. Triggs, P. F. Mclauchlan, R. I. Hartley &
A. W. Fitzgibbon, **Bundle Adjustment: A Modern Synthesis**,
Proceedings of the International Workshop on Vision Algorithms:
Theory and Practice, pp. 298-372, 1999.
.. [Wiberg] T. Wiberg, **Computation of principal components when data
are missing**, In Proc. *Second Symp. Computational Statistics*,
pages 229-236, 1976.
.. [WrightHolt] S. J. Wright and J. N. Holt, **An Inexact
Levenberg Marquardt Method for Large Sparse Nonlinear Least
Squares**, *Journal of the Australian Mathematical Society Series
B*, 26(4):387-403, 1985.
|