1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
.. highlight:: c++
.. default-domain:: cpp
.. _chapter-gradient_tutorial:
==================================
General Unconstrained Minimization
==================================
Ceres Solver besides being able to solve non-linear least squares
problem can also solve general unconstrained problems using just their
objective function value and gradients. In this chapter we will see
how to do this.
Rosenbrock's Function
=====================
Consider minimizing the famous `Rosenbrock's function
<http://en.wikipedia.org/wiki/Rosenbrock_function>`_ [#f1]_.
The simplest way to minimize is to define a templated functor to
evaluate the objective value of this function and then use Ceres
Solver's automatic differentiation to compute its derivatives.
We begin by defining a templated functor and then using
``AutoDiffFirstOrderFunction`` to construct an instance of the
``FirstOrderFunction`` interface. This is the object that is
responsible for computing the objective function value and the
gradient (if required). This is the analog of the
:class:`CostFunction` when defining non-linear least squares problems
in Ceres.
.. code::
// f(x,y) = (1-x)^2 + 100(y - x^2)^2;
struct Rosenbrock {
template <typename T>
bool operator()(const T* parameters, T* cost) const {
const T x = parameters[0];
const T y = parameters[1];
cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
return true;
}
static ceres::FirstOrderFunction* Create() {
constexpr int kNumParameters = 2;
return new ceres::AutoDiffFirstOrderFunction<Rosenbrock, kNumParameters>(
new Rosenbrock);
}
};
Minimizing it then is a straightforward matter of constructing a
:class:`GradientProblem` object and calling :func:`Solve` on it.
.. code::
double parameters[2] = {-1.2, 1.0};
ceres::GradientProblem problem(Rosenbrock::Create());
ceres::GradientProblemSolver::Options options;
options.minimizer_progress_to_stdout = true;
ceres::GradientProblemSolver::Summary summary;
ceres::Solve(options, problem, parameters, &summary);
std::cout << summary.FullReport() << "\n";
Executing this code results, solve the problem using limited memory
`BFGS
<http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm>`_
algorithm.
.. code-block:: bash
0: f: 2.420000e+01 d: 0.00e+00 g: 2.16e+02 h: 0.00e+00 s: 0.00e+00 e: 0 it: 2.29e-05 tt: 2.29e-05
1: f: 4.280493e+00 d: 1.99e+01 g: 1.52e+01 h: 2.01e-01 s: 8.62e-04 e: 2 it: 8.39e-05 tt: 1.62e-04
2: f: 3.571154e+00 d: 7.09e-01 g: 1.35e+01 h: 3.78e-01 s: 1.34e-01 e: 3 it: 2.22e-05 tt: 1.91e-04
3: f: 3.440869e+00 d: 1.30e-01 g: 1.73e+01 h: 1.36e-01 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 2.01e-04
4: f: 3.213597e+00 d: 2.27e-01 g: 1.55e+01 h: 1.06e-01 s: 4.59e-01 e: 1 it: 3.81e-06 tt: 2.10e-04
5: f: 2.839723e+00 d: 3.74e-01 g: 1.05e+01 h: 1.34e-01 s: 5.24e-01 e: 1 it: 4.05e-06 tt: 2.19e-04
6: f: 2.448490e+00 d: 3.91e-01 g: 1.29e+01 h: 3.04e-01 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 2.28e-04
7: f: 1.943019e+00 d: 5.05e-01 g: 4.00e+00 h: 8.81e-02 s: 7.43e-01 e: 1 it: 4.05e-06 tt: 2.36e-04
8: f: 1.731469e+00 d: 2.12e-01 g: 7.36e+00 h: 1.71e-01 s: 4.60e-01 e: 2 it: 1.22e-05 tt: 2.52e-04
9: f: 1.503267e+00 d: 2.28e-01 g: 6.47e+00 h: 8.66e-02 s: 1.00e+00 e: 1 it: 5.96e-06 tt: 2.66e-04
10: f: 1.228331e+00 d: 2.75e-01 g: 2.00e+00 h: 7.70e-02 s: 7.90e-01 e: 1 it: 4.05e-06 tt: 2.75e-04
11: f: 1.016523e+00 d: 2.12e-01 g: 5.15e+00 h: 1.39e-01 s: 3.76e-01 e: 2 it: 9.06e-06 tt: 2.88e-04
12: f: 9.145773e-01 d: 1.02e-01 g: 6.74e+00 h: 7.98e-02 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 2.97e-04
13: f: 7.508302e-01 d: 1.64e-01 g: 3.88e+00 h: 5.76e-02 s: 4.93e-01 e: 1 it: 5.01e-06 tt: 3.05e-04
14: f: 5.832378e-01 d: 1.68e-01 g: 5.56e+00 h: 1.42e-01 s: 1.00e+00 e: 1 it: 4.77e-06 tt: 3.13e-04
15: f: 3.969581e-01 d: 1.86e-01 g: 1.64e+00 h: 1.17e-01 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 3.20e-04
16: f: 3.171557e-01 d: 7.98e-02 g: 3.84e+00 h: 1.18e-01 s: 3.97e-01 e: 2 it: 8.82e-06 tt: 3.33e-04
17: f: 2.641257e-01 d: 5.30e-02 g: 3.27e+00 h: 6.14e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 3.42e-04
18: f: 1.909730e-01 d: 7.32e-02 g: 5.29e-01 h: 8.55e-02 s: 6.82e-01 e: 1 it: 1.00e-05 tt: 4.64e-04
19: f: 1.472012e-01 d: 4.38e-02 g: 3.11e+00 h: 1.20e-01 s: 3.47e-01 e: 2 it: 1.29e-05 tt: 4.87e-04
20: f: 1.093558e-01 d: 3.78e-02 g: 2.97e+00 h: 8.43e-02 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 4.97e-04
21: f: 6.710346e-02 d: 4.23e-02 g: 1.42e+00 h: 9.64e-02 s: 8.85e-01 e: 1 it: 4.05e-06 tt: 5.06e-04
22: f: 3.993377e-02 d: 2.72e-02 g: 2.30e+00 h: 1.29e-01 s: 4.63e-01 e: 2 it: 1.00e-05 tt: 5.25e-04
23: f: 2.911794e-02 d: 1.08e-02 g: 2.55e+00 h: 6.55e-02 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 5.34e-04
24: f: 1.457683e-02 d: 1.45e-02 g: 2.77e-01 h: 6.37e-02 s: 6.14e-01 e: 1 it: 4.05e-06 tt: 5.42e-04
25: f: 8.577515e-03 d: 6.00e-03 g: 2.86e+00 h: 1.40e-01 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 5.49e-04
26: f: 3.486574e-03 d: 5.09e-03 g: 1.76e-01 h: 1.23e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 5.57e-04
27: f: 1.257570e-03 d: 2.23e-03 g: 1.39e-01 h: 5.08e-02 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 5.65e-04
28: f: 2.783568e-04 d: 9.79e-04 g: 6.20e-01 h: 6.47e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 5.73e-04
29: f: 2.533399e-05 d: 2.53e-04 g: 1.68e-02 h: 1.98e-03 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 5.81e-04
30: f: 7.591572e-07 d: 2.46e-05 g: 5.40e-03 h: 9.27e-03 s: 1.00e+00 e: 1 it: 5.96e-06 tt: 6.30e-04
31: f: 1.902460e-09 d: 7.57e-07 g: 1.62e-03 h: 1.89e-03 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 6.39e-04
32: f: 1.003030e-12 d: 1.90e-09 g: 3.50e-05 h: 3.52e-05 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 6.47e-04
33: f: 4.835994e-17 d: 1.00e-12 g: 1.05e-07 h: 1.13e-06 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 6.59e-04
34: f: 1.885250e-22 d: 4.84e-17 g: 2.69e-10 h: 1.45e-08 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 6.67e-04
Solver Summary (v 2.1.0-eigen-(3.4.0)-lapack-suitesparse-(5.10.1)-cxsparse-(3.2.0)-acceleratesparse-eigensparse-no_openmp)
Parameters 2
Line search direction LBFGS (20)
Line search type CUBIC WOLFE
Cost:
Initial 2.420000e+01
Final 1.955192e-27
Change 2.420000e+01
Minimizer iterations 36
Time (in seconds):
Cost evaluation 0.000000 (0)
Gradient & cost evaluation 0.000005 (44)
Polynomial minimization 0.000041
Total 0.000368
Termination: CONVERGENCE (Parameter tolerance reached. Relative step_norm: 1.890726e-11 <= 1.000000e-08.)
Initial x: -1.2 y: 1
Final x: 1 y: 1
If you are unable to use automatic differentiation for some reason
(say beacause you need to call an external library), then you can
use numeric differentiation. In that case the functor is defined as
follows [#f2]_.
.. code::
// f(x,y) = (1-x)^2 + 100(y - x^2)^2;
struct Rosenbrock {
bool operator()(const double* parameters, double* cost) const {
const double x = parameters[0];
const double y = parameters[1];
cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
return true;
}
static ceres::FirstOrderFunction* Create() {
constexpr int kNumParameters = 2;
return new ceres::NumericDiffFirstOrderFunction<Rosenbrock,
ceres::CENTRAL,
kNumParameters>(
new Rosenbrock);
}
};
And finally, if you would rather compute the derivatives by hand (say
because the size of the parameter vector is too large to be
automatically differentiated). Then you should define an instance of
`FirstOrderFunction`, which is the analog of :class:`CostFunction` for
non-linear least squares problems [#f3]_.
.. code::
// f(x,y) = (1-x)^2 + 100(y - x^2)^2;
class Rosenbrock final : public ceres::FirstOrderFunction {
public:
~Rosenbrock() override {}
bool Evaluate(const double* parameters,
double* cost,
double* gradient) const override {
const double x = parameters[0];
const double y = parameters[1];
cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
if (gradient) {
gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
gradient[1] = 200.0 * (y - x * x);
}
return true;
}
int NumParameters() const override { return 2; }
};
.. rubric:: Footnotes
.. [#f1] `examples/rosenbrock.cc
<https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock.cc>`_
.. [#f2] `examples/rosenbrock_numeric_diff.cc
<https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock_numeric_diff.cc>`_
.. [#f3] `examples/rosenbrock_analytic_diff.cc
<https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock_analytic_diff.cc>`_
|