File: nnls_modeling.rst

package info (click to toggle)
ceres-solver 2.1.0%2Breally2.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,656 kB
  • sloc: cpp: 80,895; ansic: 2,869; python: 679; sh: 78; makefile: 74; xml: 21
file content (3321 lines) | stat: -rw-r--r-- 130,402 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
.. default-domain:: cpp

.. highlight:: c++

.. cpp:namespace:: ceres

.. _`chapter-nnls_modeling`:

=================================
Modeling Non-linear Least Squares
=================================

Introduction
============

Ceres solver consists of two distinct parts. A modeling API which
provides a rich set of tools to construct an optimization problem one
term at a time and a solver API that controls the minimization
algorithm. This chapter is devoted to the task of modeling
optimization problems using Ceres. :ref:`chapter-nnls_solving` discusses
the various ways in which an optimization problem can be solved using
Ceres.

Ceres solves robustified bounds constrained non-linear least squares
problems of the form:

.. math:: :label: ceresproblem_modeling

   \min_{\mathbf{x}} &\quad \frac{1}{2}\sum_{i}
   \rho_i\left(\left\|f_i\left(x_{i_1},
   ... ,x_{i_k}\right)\right\|^2\right)  \\
   \text{s.t.} &\quad l_j \le x_j \le u_j

In Ceres parlance, the expression
:math:`\rho_i\left(\left\|f_i\left(x_{i_1},...,x_{i_k}\right)\right\|^2\right)`
is known as a **residual block**, where :math:`f_i(\cdot)` is a
:class:`CostFunction` that depends on the **parameter blocks**
:math:`\left\{x_{i_1},... , x_{i_k}\right\}`.

In most optimization problems small groups of scalars occur
together. For example the three components of a translation vector and
the four components of the quaternion that define the pose of a
camera. We refer to such a group of scalars as a **parameter block**. Of
course a parameter block can be just a single scalar too.

:math:`\rho_i` is a :class:`LossFunction`. A :class:`LossFunction` is
a scalar valued function that is used to reduce the influence of
outliers on the solution of non-linear least squares problems.

:math:`l_j` and :math:`u_j` are lower and upper bounds on the
parameter block :math:`x_j`.

As a special case, when :math:`\rho_i(x) = x`, i.e., the identity
function, and :math:`l_j = -\infty` and :math:`u_j = \infty` we get
the usual unconstrained `non-linear least squares problem
<http://en.wikipedia.org/wiki/Non-linear_least_squares>`_.

.. math:: :label: ceresproblemunconstrained

   \frac{1}{2}\sum_{i} \left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2.

:class:`CostFunction`
=====================

For each term in the objective function, a :class:`CostFunction` is
responsible for computing a vector of residuals and Jacobian
matrices. Concretely, consider a function
:math:`f\left(x_{1},...,x_{k}\right)` that depends on parameter blocks
:math:`\left[x_{1}, ... , x_{k}\right]`.

Then, given :math:`\left[x_{1}, ... , x_{k}\right]`,
:class:`CostFunction` is responsible for computing the vector
:math:`f\left(x_{1},...,x_{k}\right)` and the Jacobian matrices

.. math:: J_i =  D_i f(x_1, ..., x_k) \quad \forall i \in \{1, \ldots, k\}

.. class:: CostFunction

   .. code-block:: c++

    class CostFunction {
     public:
      virtual bool Evaluate(double const* const* parameters,
                            double* residuals,
                            double** jacobians) = 0;
      const vector<int32>& parameter_block_sizes();
      int num_residuals() const;

     protected:
      vector<int32>* mutable_parameter_block_sizes();
      void set_num_residuals(int num_residuals);
    };


The signature of the :class:`CostFunction` (number and sizes of input
parameter blocks and number of outputs) is stored in
:member:`CostFunction::parameter_block_sizes_` and
:member:`CostFunction::num_residuals_` respectively. User code
inheriting from this class is expected to set these two members with
the corresponding accessors. This information will be verified by the
:class:`Problem` when added with :func:`Problem::AddResidualBlock`.

.. function:: bool CostFunction::Evaluate(double const* const* parameters, double* residuals, double** jacobians)

   Compute the residual vector and the Jacobian matrices.

   ``parameters`` is an array of arrays of size
   ``CostFunction::parameter_block_sizes_.size()`` and
   ``parameters[i]`` is an array of size ``parameter_block_sizes_[i]``
   that contains the :math:`i^{\text{th}}` parameter block that the
   ``CostFunction`` depends on.

   ``parameters`` is never ``nullptr``.

   ``residuals`` is an array of size ``num_residuals_``.

   ``residuals`` is never ``nullptr``.

   ``jacobians`` is an array of arrays of size
   ``CostFunction::parameter_block_sizes_.size()``.

   If ``jacobians`` is ``nullptr``, the user is only expected to compute
   the residuals.

   ``jacobians[i]`` is a row-major array of size ``num_residuals x
   parameter_block_sizes_[i]``.

   If ``jacobians[i]`` is **not** ``nullptr``, the user is required to
   compute the Jacobian of the residual vector with respect to
   ``parameters[i]`` and store it in this array, i.e.

   ``jacobians[i][r * parameter_block_sizes_[i] + c]`` =
   :math:`\frac{\displaystyle \partial \text{residual}[r]}{\displaystyle \partial \text{parameters}[i][c]}`

   If ``jacobians[i]`` is ``nullptr``, then this computation can be
   skipped. This is the case when the corresponding parameter block is
   marked constant.

   The return value indicates whether the computation of the residuals
   and/or jacobians was successful or not. This can be used to
   communicate numerical failures in Jacobian computations for
   instance.

:class:`SizedCostFunction`
==========================

.. class:: SizedCostFunction

   If the size of the parameter blocks and the size of the residual
   vector is known at compile time (this is the common case),
   :class:`SizeCostFunction` can be used where these values can be
   specified as template parameters and the user only needs to
   implement :func:`CostFunction::Evaluate`.

   .. code-block:: c++

    template<int kNumResiduals, int... Ns>
    class SizedCostFunction : public CostFunction {
     public:
      virtual bool Evaluate(double const* const* parameters,
                            double* residuals,
                            double** jacobians) const = 0;
    };


:class:`AutoDiffCostFunction`
=============================

.. class:: AutoDiffCostFunction

   Defining a :class:`CostFunction` or a :class:`SizedCostFunction`
   can be a tedious and error prone especially when computing
   derivatives.  To this end Ceres provides `automatic differentiation
   <http://en.wikipedia.org/wiki/Automatic_differentiation>`_.

   .. code-block:: c++

     template <typename CostFunctor,
            int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC.
            int... Ns>          // Size of each parameter block
     class AutoDiffCostFunction : public
     SizedCostFunction<kNumResiduals, Ns> {
      public:
       AutoDiffCostFunction(CostFunctor* functor, ownership = TAKE_OWNERSHIP);
       // Ignore the template parameter kNumResiduals and use
       // num_residuals instead.
       AutoDiffCostFunction(CostFunctor* functor,
                            int num_residuals,
                            ownership = TAKE_OWNERSHIP);
     };

   To get an auto differentiated cost function, you must define a
   class with a templated ``operator()`` (a functor) that computes the
   cost function in terms of the template parameter ``T``. The
   autodiff framework substitutes appropriate ``Jet`` objects for
   ``T`` in order to compute the derivative when necessary, but this
   is hidden, and you should write the function as if ``T`` were a
   scalar type (e.g. a double-precision floating point number).

   The function must write the computed value in the last argument
   (the only non-``const`` one) and return true to indicate success.

   For example, consider a scalar error :math:`e = k - x^\top y`,
   where both :math:`x` and :math:`y` are two-dimensional vector
   parameters and :math:`k` is a constant. The form of this error,
   which is the difference between a constant and an expression, is a
   common pattern in least squares problems. For example, the value
   :math:`x^\top y` might be the model expectation for a series of
   measurements, where there is an instance of the cost function for
   each measurement :math:`k`.

   The actual cost added to the total problem is :math:`e^2`, or
   :math:`(k - x^\top y)^2`; however, the squaring is implicitly done
   by the optimization framework.

   To write an auto-differentiable cost function for the above model,
   first define the object

   .. code-block:: c++

    class MyScalarCostFunctor {
      MyScalarCostFunctor(double k): k_(k) {}

      template <typename T>
      bool operator()(const T* const x , const T* const y, T* e) const {
        e[0] = k_ - x[0] * y[0] - x[1] * y[1];
        return true;
      }

     private:
      double k_;
    };


   Note that in the declaration of ``operator()`` the input parameters
   ``x`` and ``y`` come first, and are passed as const pointers to arrays
   of ``T``. If there were three input parameters, then the third input
   parameter would come after ``y``. The output is always the last
   parameter, and is also a pointer to an array. In the example above,
   ``e`` is a scalar, so only ``e[0]`` is set.

   Then given this class definition, the auto differentiated cost
   function for it can be constructed as follows.

   .. code-block:: c++

    CostFunction* cost_function
        = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
            new MyScalarCostFunctor(1.0));              ^  ^  ^
                                                        |  |  |
                            Dimension of residual ------+  |  |
                            Dimension of x ----------------+  |
                            Dimension of y -------------------+


   In this example, there is usually an instance for each measurement
   of ``k``.

   In the instantiation above, the template parameters following
   ``MyScalarCostFunction``, ``<1, 2, 2>`` describe the functor as
   computing a 1-dimensional output from two arguments, both
   2-dimensional.

   By default :class:`AutoDiffCostFunction` will take ownership of the cost
   functor pointer passed to it, ie. will call `delete` on the cost functor
   when the :class:`AutoDiffCostFunction` itself is deleted. However, this may
   be undesirable in certain cases, therefore it is also possible to specify
   :class:`DO_NOT_TAKE_OWNERSHIP` as a second argument in the constructor,
   while passing a pointer to a cost functor which does not need to be deleted
   by the AutoDiffCostFunction. For example:

   .. code-block:: c++

    MyScalarCostFunctor functor(1.0)
    CostFunction* cost_function
        = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
            &functor, DO_NOT_TAKE_OWNERSHIP);

   :class:`AutoDiffCostFunction` also supports cost functions with a
   runtime-determined number of residuals. For example:

   .. code-block:: c++

     CostFunction* cost_function
         = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
             new CostFunctorWithDynamicNumResiduals(1.0),   ^     ^  ^
             runtime_number_of_residuals); <----+           |     |  |
                                                |           |     |  |
                                                |           |     |  |
               Actual number of residuals ------+           |     |  |
               Indicate dynamic number of residuals --------+     |  |
               Dimension of x ------------------------------------+  |
               Dimension of y ---------------------------------------+

   .. warning::
       A common beginner's error when first using :class:`AutoDiffCostFunction`
       is to get the sizing wrong. In particular, there is a tendency to set the
       template parameters to (dimension of residual, number of parameters)
       instead of passing a dimension parameter for *every parameter block*. In
       the example above, that would be ``<MyScalarCostFunction, 1, 2>``, which
       is missing the 2 as the last template argument.


:class:`DynamicAutoDiffCostFunction`
====================================

.. class:: DynamicAutoDiffCostFunction

   :class:`AutoDiffCostFunction` requires that the number of parameter
   blocks and their sizes be known at compile time. In a number of
   applications, this is not enough e.g., Bezier curve fitting, Neural
   Network training etc.

     .. code-block:: c++

      template <typename CostFunctor, int Stride = 4>
      class DynamicAutoDiffCostFunction : public CostFunction {
      };

   In such cases :class:`DynamicAutoDiffCostFunction` can be
   used. Like :class:`AutoDiffCostFunction` the user must define a
   templated functor, but the signature of the functor differs
   slightly. The expected interface for the cost functors is:

     .. code-block:: c++

       struct MyCostFunctor {
         template<typename T>
         bool operator()(T const* const* parameters, T* residuals) const {
         }
       }

   Since the sizing of the parameters is done at runtime, you must
   also specify the sizes after creating the dynamic autodiff cost
   function. For example:

     .. code-block:: c++

       DynamicAutoDiffCostFunction<MyCostFunctor, 4>* cost_function =
         new DynamicAutoDiffCostFunction<MyCostFunctor, 4>(
           new MyCostFunctor());
       cost_function->AddParameterBlock(5);
       cost_function->AddParameterBlock(10);
       cost_function->SetNumResiduals(21);

   Under the hood, the implementation evaluates the cost function
   multiple times, computing a small set of the derivatives (four by
   default, controlled by the ``Stride`` template parameter) with each
   pass. There is a performance tradeoff with the size of the passes;
   Smaller sizes are more cache efficient but result in larger number
   of passes, and larger stride lengths can destroy cache-locality
   while reducing the number of passes over the cost function. The
   optimal value depends on the number and sizes of the various
   parameter blocks.

   As a rule of thumb, try using :class:`AutoDiffCostFunction` before
   you use :class:`DynamicAutoDiffCostFunction`.

:class:`NumericDiffCostFunction`
================================

.. class:: NumericDiffCostFunction

  In some cases, its not possible to define a templated cost functor,
  for example when the evaluation of the residual involves a call to a
  library function that you do not have control over.  In such a
  situation, `numerical differentiation
  <http://en.wikipedia.org/wiki/Numerical_differentiation>`_ can be
  used.

  .. NOTE ::

    TODO(sameeragarwal): Add documentation for the constructor and for
    NumericDiffOptions. Update DynamicNumericDiffOptions in a similar
    manner.

  .. code-block:: c++

      template <typename CostFunctor,
                NumericDiffMethodType method = CENTRAL,
                int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC.
                int... Ns>          // Size of each parameter block.
      class NumericDiffCostFunction : public
      SizedCostFunction<kNumResiduals, Ns> {
      };

  To get a numerically differentiated :class:`CostFunction`, you must
  define a class with a ``operator()`` (a functor) that computes the
  residuals. The functor must write the computed value in the last
  argument (the only non-``const`` one) and return ``true`` to
  indicate success.  Please see :class:`CostFunction` for details on
  how the return value may be used to impose simple constraints on the
  parameter block. e.g., an object of the form

  .. code-block:: c++

     struct ScalarFunctor {
      public:
       bool operator()(const double* const x1,
                       const double* const x2,
                       double* residuals) const;
     }

  For example, consider a scalar error :math:`e = k - x'y`, where both
  :math:`x` and :math:`y` are two-dimensional column vector
  parameters, the prime sign indicates transposition, and :math:`k` is
  a constant. The form of this error, which is the difference between
  a constant and an expression, is a common pattern in least squares
  problems. For example, the value :math:`x'y` might be the model
  expectation for a series of measurements, where there is an instance
  of the cost function for each measurement :math:`k`.

  To write an numerically-differentiable class:`CostFunction` for the
  above model, first define the object

  .. code-block::  c++

     class MyScalarCostFunctor {
       MyScalarCostFunctor(double k): k_(k) {}

       bool operator()(const double* const x,
                       const double* const y,
                       double* residuals) const {
         residuals[0] = k_ - x[0] * y[0] + x[1] * y[1];
         return true;
       }

      private:
       double k_;
     };

  Note that in the declaration of ``operator()`` the input parameters
  ``x`` and ``y`` come first, and are passed as const pointers to
  arrays of ``double`` s. If there were three input parameters, then
  the third input parameter would come after ``y``. The output is
  always the last parameter, and is also a pointer to an array. In the
  example above, the residual is a scalar, so only ``residuals[0]`` is
  set.

  Then given this class definition, the numerically differentiated
  :class:`CostFunction` with central differences used for computing
  the derivative can be constructed as follows.

  .. code-block:: c++

    CostFunction* cost_function
        = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
            new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^
                                                              |     |  |  |
                                  Finite Differencing Scheme -+     |  |  |
                                  Dimension of residual ------------+  |  |
                                  Dimension of x ----------------------+  |
                                  Dimension of y -------------------------+

  In this example, there is usually an instance for each measurement
  of `k`.

  In the instantiation above, the template parameters following
  ``MyScalarCostFunctor``, ``1, 2, 2``, describe the functor as
  computing a 1-dimensional output from two arguments, both
  2-dimensional.

  NumericDiffCostFunction also supports cost functions with a
  runtime-determined number of residuals. For example:

   .. code-block:: c++

     CostFunction* cost_function
         = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(
             new CostFunctorWithDynamicNumResiduals(1.0),               ^     ^  ^
             TAKE_OWNERSHIP,                                            |     |  |
             runtime_number_of_residuals); <----+                       |     |  |
                                                |                       |     |  |
                                                |                       |     |  |
               Actual number of residuals ------+                       |     |  |
               Indicate dynamic number of residuals --------------------+     |  |
               Dimension of x ------------------------------------------------+  |
               Dimension of y ---------------------------------------------------+


  There are three available numeric differentiation schemes in ceres-solver:

  The ``FORWARD`` difference method, which approximates :math:`f'(x)`
  by computing :math:`\frac{f(x+h)-f(x)}{h}`, computes the cost
  function one additional time at :math:`x+h`. It is the fastest but
  least accurate method.

  The ``CENTRAL`` difference method is more accurate at the cost of
  twice as many function evaluations than forward difference,
  estimating :math:`f'(x)` by computing
  :math:`\frac{f(x+h)-f(x-h)}{2h}`.

  The ``RIDDERS`` difference method[Ridders]_ is an adaptive scheme
  that estimates derivatives by performing multiple central
  differences at varying scales. Specifically, the algorithm starts at
  a certain :math:`h` and as the derivative is estimated, this step
  size decreases.  To conserve function evaluations and estimate the
  derivative error, the method performs Richardson extrapolations
  between the tested step sizes.  The algorithm exhibits considerably
  higher accuracy, but does so by additional evaluations of the cost
  function.

  Consider using ``CENTRAL`` differences to begin with. Based on the
  results, either try forward difference to improve performance or
  Ridders' method to improve accuracy.

  .. warning::
      A common beginner's error when first using
      :class:`NumericDiffCostFunction` is to get the sizing wrong. In
      particular, there is a tendency to set the template parameters to
      (dimension of residual, number of parameters) instead of passing a
      dimension parameter for *every parameter*. In the example above, that
      would be ``<MyScalarCostFunctor, 1, 2>``, which is missing the last ``2``
      argument. Please be careful when setting the size parameters.


Numeric Differentiation & Manifolds
-----------------------------------

   If your cost function depends on a parameter block that must lie on
   a manifold and the functor cannot be evaluated for values of that
   parameter block not on the manifold then you may have problems
   numerically differentiating such functors.

   This is because numeric differentiation in Ceres is performed by
   perturbing the individual coordinates of the parameter blocks that
   a cost functor depends on. This perturbation assumes that the
   parameter block lives on a Euclidean Manifold rather than the
   actual manifold associated with the parameter block. As a result
   some of the perturbed points may not lie on the manifold anymore.

   For example consider a four dimensional parameter block that is
   interpreted as a unit Quaternion. Perturbing the coordinates of
   this parameter block will violate the unit norm property of the
   parameter block.

   Fixing this problem requires that :class:`NumericDiffCostFunction`
   be aware of the :class:`Manifold` associated with each
   parameter block and only generate perturbations in the local
   tangent space of each parameter block.

   For now this is not considered to be a serious enough problem to
   warrant changing the :class:`NumericDiffCostFunction` API. Further,
   in most cases it is relatively straightforward to project a point
   off the manifold back onto the manifold before using it in the
   functor. For example in case of the Quaternion, normalizing the
   4-vector before using it does the trick.

   **Alternate Interface**

   For a variety of reasons, including compatibility with legacy code,
   :class:`NumericDiffCostFunction` can also take
   :class:`CostFunction` objects as input. The following describes
   how.

   To get a numerically differentiated cost function, define a
   subclass of :class:`CostFunction` such that the
   :func:`CostFunction::Evaluate` function ignores the ``jacobians``
   parameter. The numeric differentiation wrapper will fill in the
   jacobian parameter if necessary by repeatedly calling the
   :func:`CostFunction::Evaluate` with small changes to the
   appropriate parameters, and computing the slope. For performance,
   the numeric differentiation wrapper class is templated on the
   concrete cost function, even though it could be implemented only in
   terms of the :class:`CostFunction` interface.

   The numerically differentiated version of a cost function for a
   cost function can be constructed as follows:

   .. code-block:: c++

     CostFunction* cost_function
         = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
             new MyCostFunction(...), TAKE_OWNERSHIP);

   where ``MyCostFunction`` has 1 residual and 2 parameter blocks with
   sizes 4 and 8 respectively. Look at the tests for a more detailed
   example.

:class:`DynamicNumericDiffCostFunction`
=======================================

.. class:: DynamicNumericDiffCostFunction

   Like :class:`AutoDiffCostFunction` :class:`NumericDiffCostFunction`
   requires that the number of parameter blocks and their sizes be
   known at compile time. In a number of applications, this is not enough.

     .. code-block:: c++

      template <typename CostFunctor, NumericDiffMethodType method = CENTRAL>
      class DynamicNumericDiffCostFunction : public CostFunction {
      };

   In such cases when numeric differentiation is desired,
   :class:`DynamicNumericDiffCostFunction` can be used.

   Like :class:`NumericDiffCostFunction` the user must define a
   functor, but the signature of the functor differs slightly. The
   expected interface for the cost functors is:

     .. code-block:: c++

       struct MyCostFunctor {
         bool operator()(double const* const* parameters, double* residuals) const {
         }
       }

   Since the sizing of the parameters is done at runtime, you must
   also specify the sizes after creating the dynamic numeric diff cost
   function. For example:

     .. code-block:: c++

       DynamicNumericDiffCostFunction<MyCostFunctor>* cost_function =
         new DynamicNumericDiffCostFunction<MyCostFunctor>(new MyCostFunctor);
       cost_function->AddParameterBlock(5);
       cost_function->AddParameterBlock(10);
       cost_function->SetNumResiduals(21);

   As a rule of thumb, try using :class:`NumericDiffCostFunction` before
   you use :class:`DynamicNumericDiffCostFunction`.

   .. warning::
       The same caution about mixing manifolds with numeric differentiation
       applies as is the case with :class:`NumericDiffCostFunction`.

:class:`CostFunctionToFunctor`
==============================

.. class:: CostFunctionToFunctor

   :class:`CostFunctionToFunctor` is an adapter class that allows
   users to use :class:`CostFunction` objects in templated functors
   which are to be used for automatic differentiation. This allows
   the user to seamlessly mix analytic, numeric and automatic
   differentiation.

   For example, let us assume that

   .. code-block:: c++

     class IntrinsicProjection : public SizedCostFunction<2, 5, 3> {
       public:
         IntrinsicProjection(const double* observation);
         virtual bool Evaluate(double const* const* parameters,
                               double* residuals,
                               double** jacobians) const;
     };

   is a :class:`CostFunction` that implements the projection of a
   point in its local coordinate system onto its image plane and
   subtracts it from the observed point projection. It can compute its
   residual and either via analytic or numerical differentiation can
   compute its jacobians.

   Now we would like to compose the action of this
   :class:`CostFunction` with the action of camera extrinsics, i.e.,
   rotation and translation. Say we have a templated function

   .. code-block:: c++

      template<typename T>
      void RotateAndTranslatePoint(const T* rotation,
                                   const T* translation,
                                   const T* point,
                                   T* result);


   Then we can now do the following,

   .. code-block:: c++

    struct CameraProjection {
      CameraProjection(double* observation)
      : intrinsic_projection_(new IntrinsicProjection(observation)) {
      }

      template <typename T>
      bool operator()(const T* rotation,
                      const T* translation,
                      const T* intrinsics,
                      const T* point,
                      T* residual) const {
        T transformed_point[3];
        RotateAndTranslatePoint(rotation, translation, point, transformed_point);

        // Note that we call intrinsic_projection_, just like it was
        // any other templated functor.
        return intrinsic_projection_(intrinsics, transformed_point, residual);
      }

     private:
      CostFunctionToFunctor<2,5,3> intrinsic_projection_;
    };

   Note that :class:`CostFunctionToFunctor` takes ownership of the
   :class:`CostFunction` that was passed in to the constructor.

   In the above example, we assumed that ``IntrinsicProjection`` is a
   ``CostFunction`` capable of evaluating its value and its
   derivatives. Suppose, if that were not the case and
   ``IntrinsicProjection`` was defined as follows:

   .. code-block:: c++

    struct IntrinsicProjection {
      IntrinsicProjection(const double* observation) {
        observation_[0] = observation[0];
        observation_[1] = observation[1];
      }

      bool operator()(const double* calibration,
                      const double* point,
                      double* residuals) const {
        double projection[2];
        ThirdPartyProjectionFunction(calibration, point, projection);
        residuals[0] = observation_[0] - projection[0];
        residuals[1] = observation_[1] - projection[1];
        return true;
      }
      double observation_[2];
    };


  Here ``ThirdPartyProjectionFunction`` is some third party library
  function that we have no control over. So this function can compute
  its value and we would like to use numeric differentiation to
  compute its derivatives. In this case we can use a combination of
  ``NumericDiffCostFunction`` and ``CostFunctionToFunctor`` to get the
  job done.

  .. code-block:: c++

   struct CameraProjection {
     CameraProjection(double* observation)
        : intrinsic_projection_(
              new NumericDiffCostFunction<IntrinsicProjection, CENTRAL, 2, 5, 3>(
                  new IntrinsicProjection(observation))) {}

     template <typename T>
     bool operator()(const T* rotation,
                     const T* translation,
                     const T* intrinsics,
                     const T* point,
                     T* residuals) const {
       T transformed_point[3];
       RotateAndTranslatePoint(rotation, translation, point, transformed_point);
       return intrinsic_projection_(intrinsics, transformed_point, residuals);
     }

    private:
     CostFunctionToFunctor<2, 5, 3> intrinsic_projection_;
   };


:class:`DynamicCostFunctionToFunctor`
=====================================

.. class:: DynamicCostFunctionToFunctor

   :class:`DynamicCostFunctionToFunctor` provides the same functionality as
   :class:`CostFunctionToFunctor` for cases where the number and size of the
   parameter vectors and residuals are not known at compile-time. The API
   provided by :class:`DynamicCostFunctionToFunctor` matches what would be
   expected by :class:`DynamicAutoDiffCostFunction`, i.e. it provides a
   templated functor of this form:

   .. code-block:: c++

    template<typename T>
    bool operator()(T const* const* parameters, T* residuals) const;

   Similar to the example given for :class:`CostFunctionToFunctor`, let us
   assume that

   .. code-block:: c++

     class IntrinsicProjection : public CostFunction {
       public:
         IntrinsicProjection(const double* observation);
         virtual bool Evaluate(double const* const* parameters,
                               double* residuals,
                               double** jacobians) const;
     };

   is a :class:`CostFunction` that projects a point in its local coordinate
   system onto its image plane and subtracts it from the observed point
   projection.

   Using this :class:`CostFunction` in a templated functor would then look like
   this:

   .. code-block:: c++

    struct CameraProjection {
      CameraProjection(double* observation)
          : intrinsic_projection_(new IntrinsicProjection(observation)) {
      }

      template <typename T>
      bool operator()(T const* const* parameters,
                      T* residual) const {
        const T* rotation = parameters[0];
        const T* translation = parameters[1];
        const T* intrinsics = parameters[2];
        const T* point = parameters[3];

        T transformed_point[3];
        RotateAndTranslatePoint(rotation, translation, point, transformed_point);

        const T* projection_parameters[2];
        projection_parameters[0] = intrinsics;
        projection_parameters[1] = transformed_point;
        return intrinsic_projection_(projection_parameters, residual);
      }

     private:
      DynamicCostFunctionToFunctor intrinsic_projection_;
    };

   Like :class:`CostFunctionToFunctor`, :class:`DynamicCostFunctionToFunctor`
   takes ownership of the :class:`CostFunction` that was passed in to the
   constructor.

:class:`ConditionedCostFunction`
================================

.. class:: ConditionedCostFunction

   This class allows you to apply different conditioning to the residual
   values of a wrapped cost function. An example where this is useful is
   where you have an existing cost function that produces N values, but you
   want the total cost to be something other than just the sum of these
   squared values - maybe you want to apply a different scaling to some
   values, to change their contribution to the cost.

   Usage:

   .. code-block:: c++

       //  my_cost_function produces N residuals
       CostFunction* my_cost_function = ...
       CHECK_EQ(N, my_cost_function->num_residuals());
       vector<CostFunction*> conditioners;

       //  Make N 1x1 cost functions (1 parameter, 1 residual)
       CostFunction* f_1 = ...
       conditioners.push_back(f_1);

       CostFunction* f_N = ...
       conditioners.push_back(f_N);
       ConditionedCostFunction* ccf =
         new ConditionedCostFunction(my_cost_function, conditioners);


   Now ``ccf`` 's ``residual[i]`` (i=0..N-1) will be passed though the
   :math:`i^{\text{th}}` conditioner.

   .. code-block:: c++

      ccf_residual[i] = f_i(my_cost_function_residual[i])

   and the Jacobian will be affected appropriately.


:class:`GradientChecker`
========================

.. class:: GradientChecker

    This class compares the Jacobians returned by a cost function
    against derivatives estimated using finite differencing. It is
    meant as a tool for unit testing, giving you more fine-grained
    control than the check_gradients option in the solver options.

    The condition enforced is that

    .. math:: \forall{i,j}: \frac{J_{ij} - J'_{ij}}{max_{ij}(J_{ij} - J'_{ij})} < r

    where :math:`J_{ij}` is the jacobian as computed by the supplied
    cost function multiplied by the `Manifold::PlusJacobian`,
    :math:`J'_{ij}` is the jacobian as computed by finite differences,
    multiplied by the `Manifold::PlusJacobian` as well, and :math:`r`
    is the relative precision.

   Usage:

   .. code-block:: c++

       // my_cost_function takes two parameter blocks. The first has a
       // manifold associated with it.

       CostFunction* my_cost_function = ...
       Manifold* my_manifold = ...
       NumericDiffOptions numeric_diff_options;

       std::vector<Manifold*> manifolds;
       manifolds.push_back(my_manifold);
       manifolds.push_back(nullptr);

       std::vector parameter1;
       std::vector parameter2;
       // Fill parameter 1 & 2 with test data...

       std::vector<double*> parameter_blocks;
       parameter_blocks.push_back(parameter1.data());
       parameter_blocks.push_back(parameter2.data());

       GradientChecker gradient_checker(my_cost_function,
                                        manifolds,
                                        numeric_diff_options);
       GradientCheckResults results;
       if (!gradient_checker.Probe(parameter_blocks.data(), 1e-9, &results) {
         LOG(ERROR) << "An error has occurred:\n" << results.error_log;
       }


:class:`NormalPrior`
====================

.. class:: NormalPrior

   .. code-block:: c++

     class NormalPrior: public CostFunction {
      public:
       // Check that the number of rows in the vector b are the same as the
       // number of columns in the matrix A, crash otherwise.
       NormalPrior(const Matrix& A, const Vector& b);

       virtual bool Evaluate(double const* const* parameters,
                             double* residuals,
                             double** jacobians) const;
      };

   Implements a cost function of the form

   .. math::  cost(x) = ||A(x - b)||^2

   where, the matrix :math:`A` and the vector :math:`b` are fixed and :math:`x`
   is the variable. In case the user is interested in implementing a cost
   function of the form

  .. math::  cost(x) = (x - \mu)^T S^{-1} (x - \mu)

  where, :math:`\mu` is a vector and :math:`S` is a covariance matrix,
  then, :math:`A = S^{-1/2}`, i.e the matrix :math:`A` is the square
  root of the inverse of the covariance, also known as the stiffness
  matrix. There are however no restrictions on the shape of
  :math:`A`. It is free to be rectangular, which would be the case if
  the covariance matrix :math:`S` is rank deficient.



.. _`section-loss_function`:

:class:`LossFunction`
=====================

.. class:: LossFunction

   For least squares problems where the minimization may encounter
   input terms that contain outliers, that is, completely bogus
   measurements, it is important to use a loss function that reduces
   their influence.

   Consider a structure from motion problem. The unknowns are 3D
   points and camera parameters, and the measurements are image
   coordinates describing the expected reprojected position for a
   point in a camera. For example, we want to model the geometry of a
   street scene with fire hydrants and cars, observed by a moving
   camera with unknown parameters, and the only 3D points we care
   about are the pointy tippy-tops of the fire hydrants. Our magic
   image processing algorithm, which is responsible for producing the
   measurements that are input to Ceres, has found and matched all
   such tippy-tops in all image frames, except that in one of the
   frame it mistook a car's headlight for a hydrant. If we didn't do
   anything special the residual for the erroneous measurement will
   result in the entire solution getting pulled away from the optimum
   to reduce the large error that would otherwise be attributed to the
   wrong measurement.

   Using a robust loss function, the cost for large residuals is
   reduced. In the example above, this leads to outlier terms getting
   down-weighted so they do not overly influence the final solution.

   .. code-block:: c++

    class LossFunction {
     public:
      virtual void Evaluate(double s, double out[3]) const = 0;
    };


   The key method is :func:`LossFunction::Evaluate`, which given a
   non-negative scalar ``s``, computes

   .. math:: out = \begin{bmatrix}\rho(s), & \rho'(s), & \rho''(s)\end{bmatrix}

   Here the convention is that the contribution of a term to the cost
   function is given by :math:`\frac{1}{2}\rho(s)`, where :math:`s
   =\|f_i\|^2`. Calling the method with a negative value of :math:`s`
   is an error and the implementations are not required to handle that
   case.

   Most sane choices of :math:`\rho` satisfy:

   .. math::

      \rho(0) &= 0\\
      \rho'(0) &= 1\\
      \rho'(s) &< 1 \text{ in the outlier region}\\
      \rho''(s) &< 0 \text{ in the outlier region}

   so that they mimic the squared cost for small residuals.

   **Scaling**

   Given one robustifier :math:`\rho(s)` one can change the length
   scale at which robustification takes place, by adding a scale
   factor :math:`a > 0` which gives us :math:`\rho(s,a) = a^2 \rho(s /
   a^2)` and the first and second derivatives as :math:`\rho'(s /
   a^2)` and :math:`(1 / a^2) \rho''(s / a^2)` respectively.


   The reason for the appearance of squaring is that :math:`a` is in
   the units of the residual vector norm whereas :math:`s` is a squared
   norm. For applications it is more convenient to specify :math:`a` than
   its square.

Instances
---------

Ceres includes a number of predefined loss functions. For simplicity
we described their unscaled versions. The figure below illustrates
their shape graphically. More details can be found in
``include/ceres/loss_function.h``.

.. figure:: loss.png
   :figwidth: 500px
   :height: 400px
   :align: center

   Shape of the various common loss functions.

.. class:: TrivialLoss

      .. math:: \rho(s) = s

.. class:: HuberLoss

   .. math:: \rho(s) = \begin{cases} s & s \le 1\\ 2 \sqrt{s} - 1 & s > 1 \end{cases}

.. class:: SoftLOneLoss

   .. math:: \rho(s) = 2 (\sqrt{1+s} - 1)

.. class:: CauchyLoss

   .. math:: \rho(s) = \log(1 + s)

.. class:: ArctanLoss

   .. math:: \rho(s) = \arctan(s)

.. class:: TolerantLoss

   .. math:: \rho(s,a,b) = b \log(1 + e^{(s - a) / b}) - b \log(1 + e^{-a / b})

.. class:: ComposedLoss

   Given two loss functions ``f`` and ``g``, implements the loss
   function ``h(s) = f(g(s))``.

   .. code-block:: c++

      class ComposedLoss : public LossFunction {
       public:
        explicit ComposedLoss(const LossFunction* f,
                              Ownership ownership_f,
                              const LossFunction* g,
                              Ownership ownership_g);
      };

.. class:: ScaledLoss

   Sometimes you want to simply scale the output value of the
   robustifier. For example, you might want to weight different error
   terms differently (e.g., weight pixel reprojection errors
   differently from terrain errors).

   Given a loss function :math:`\rho(s)` and a scalar :math:`a`, :class:`ScaledLoss`
   implements the function :math:`a \rho(s)`.

   Since we treat a ``nullptr`` Loss function as the Identity loss
   function, :math:`rho` = ``nullptr``: is a valid input and will result
   in the input being scaled by :math:`a`. This provides a simple way
   of implementing a scaled ResidualBlock.

.. class:: LossFunctionWrapper

   Sometimes after the optimization problem has been constructed, we
   wish to mutate the scale of the loss function. For example, when
   performing estimation from data which has substantial outliers,
   convergence can be improved by starting out with a large scale,
   optimizing the problem and then reducing the scale. This can have
   better convergence behavior than just using a loss function with a
   small scale.

   This templated class allows the user to implement a loss function
   whose scale can be mutated after an optimization problem has been
   constructed, e.g,

   .. code-block:: c++

     Problem problem;

     // Add parameter blocks

     CostFunction* cost_function =
         new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>(
             new UW_Camera_Mapper(feature_x, feature_y));

     LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP);
     problem.AddResidualBlock(cost_function, loss_function, parameters);

     Solver::Options options;
     Solver::Summary summary;
     Solve(options, &problem, &summary);

     loss_function->Reset(new HuberLoss(1.0), TAKE_OWNERSHIP);
     Solve(options, &problem, &summary);


Theory
------

Let us consider a problem with a single parameter block.

.. math::

 \min_x \frac{1}{2}\rho(f^2(x))


Then, the robustified gradient and the Gauss-Newton Hessian are

.. math::

        g(x) &= \rho'J^\top(x)f(x)\\
        H(x) &= J^\top(x)\left(\rho' + 2 \rho''f(x)f^\top(x)\right)J(x)

where the terms involving the second derivatives of :math:`f(x)` have
been ignored. Note that :math:`H(x)` is indefinite if
:math:`\rho''f(x)^\top f(x) + \frac{1}{2}\rho' < 0`. If this is not
the case, then its possible to re-weight the residual and the Jacobian
matrix such that the robustified Gauss-Newton step corresponds to an
ordinary linear least squares problem.

Let :math:`\alpha` be a root of

.. math:: \frac{1}{2}\alpha^2 - \alpha - \frac{\rho''}{\rho'}\|f(x)\|^2 = 0.


Then, define the rescaled residual and Jacobian as

.. math::

        \tilde{f}(x) &= \frac{\sqrt{\rho'}}{1 - \alpha} f(x)\\
        \tilde{J}(x) &= \sqrt{\rho'}\left(1 - \alpha
                        \frac{f(x)f^\top(x)}{\left\|f(x)\right\|^2} \right)J(x)


In the case :math:`2 \rho''\left\|f(x)\right\|^2 + \rho' \lesssim 0`,
we limit :math:`\alpha \le 1- \epsilon` for some small
:math:`\epsilon`. For more details see [Triggs]_.

With this simple rescaling, one can apply any Jacobian based non-linear
least squares algorithm to robustified non-linear least squares
problems.


While the theory described above is elegant, in practice we observe
that using the Triggs correction when :math:`\rho'' > 0` leads to poor
performance, so we upper bound it by zero. For more details see
`corrector.cc <https://github.com/ceres-solver/ceres-solver/blob/master/internal/ceres/corrector.cc#L51>`_


:class:`Manifolds`
==================

.. class:: Manifold

In sensor fusion problems, we often have to model quantities that live
in spaces known as `Manifolds
<https://en.wikipedia.org/wiki/Manifold>`_, for example the
rotation/orientation of a sensor that is represented by a `Quaternion
<https://en.wikipedia.org/wiki/Quaternion>`_.

Manifolds are spaces which locally look like Euclidean spaces. More
precisely, at each point on the manifold there is a linear space that
is tangent to the manifold. It has dimension equal to the intrinsic
dimension of the manifold itself, which is less than or equal to the
ambient space in which the manifold is embedded.

For example, the tangent space to a point on a sphere in three
dimensions is the two dimensional plane that is tangent to the sphere
at that point. There are two reasons tangent spaces are interesting:

1. They are Eucliean spaces so the usual vector space operations apply
   there, which makes numerical operations easy.

2. Movements in the tangent space translate into movements along the
   manifold.  Movements perpendicular to the tangent space do not
   translate into movements on the manifold.

However, moving along the 2 dimensional plane tangent to the sphere
and projecting back onto the sphere will move you away from the point
you started from but moving along the normal at the same point and the
projecting back onto the sphere brings you back to the point.

Besides the mathematical niceness, modeling manifold valued
quantities correctly and paying attention to their geometry has
practical benefits too:

1. It naturally constrains the quantity to the manifold throughout the
   optimization, freeing the user from hacks like *quaternion
   normalization*.

2. It reduces the dimension of the optimization problem to its
   *natural* size. For example, a quantity restricted to a line is a
   one dimensional object regardless of the dimension of the ambient
   space in which this line lives.

   Working in the tangent space reduces not just the computational
   complexity of the optimization algorithm, but also improves the
   numerical behaviour of the algorithm.

A basic operation one can perform on a manifold is the
:math:`\boxplus` operation that computes the result of moving along
:math:`\delta` in the tangent space at :math:`x`, and then projecting
back onto the manifold that :math:`x` belongs to. Also known as a
*Retraction*, :math:`\boxplus` is a generalization of vector addition
in Euclidean spaces.

The inverse of :math:`\boxplus` is :math:`\boxminus`, which given two
points :math:`y` and :math:`x` on the manifold computes the tangent
vector :math:`\Delta` at :math:`x` s.t. :math:`\boxplus(x, \Delta) =
y`.

Let us now consider two examples.

The `Euclidean space <https://en.wikipedia.org/wiki/Euclidean_space>`_
:math:`\mathbb{R}^n` is the simplest example of a manifold. It has
dimension :math:`n` (and so does its tangent space) and
:math:`\boxplus` and :math:`\boxminus` are the familiar vector sum and
difference operations.

.. math::
   \begin{align*}
   \boxplus(x, \Delta) &= x + \Delta = y\\
   \boxminus(y, x) &= y - x = \Delta.
   \end{align*}

A more interesting case is the case :math:`SO(3)`, the `special
orthogonal group <https://en.wikipedia.org/wiki/3D_rotation_group>`_
in three dimensions - the space of :math:`3\times3` rotation
matrices. :math:`SO(3)` is a three dimensional manifold embedded in
:math:`\mathbb{R}^9` or :math:`\mathbb{R}^{3\times 3}`.  So points on :math:`SO(3)` are
represented using 9 dimensional vectors or :math:`3\times 3` matrices,
and points in its tangent spaces are represented by 3 dimensional
vectors.

For :math:`SO(3)`, :math:`\boxplus` and :math:`\boxminus` are defined
in terms of the matrix :math:`\exp` and :math:`\log` operations as
follows:

Given a 3-vector :math:`\Delta = [\begin{matrix}p,&q,&r\end{matrix}]`, we have

.. math::

   \exp(\Delta) & = \left [ \begin{matrix}
   \cos \theta + cp^2 & -sr + cpq        &  sq + cpr \\
   sr + cpq         & \cos \theta + cq^2& -sp + cqr \\
   -sq + cpr        & sp + cqr         & \cos \theta + cr^2
   \end{matrix} \right ]

where,

.. math::
     \begin{align}
     \theta &= \sqrt{p^2 + q^2 + r^2},\\
     s &= \frac{\sin \theta}{\theta},\\
     c &= \frac{1 - \cos \theta}{\theta^2}.
     \end{align}

Given :math:`x \in SO(3)`, we have

.. math::

   \log(x) = 1/(2 \sin(\theta)/\theta)\left[\begin{matrix} x_{32} - x_{23},& x_{13} - x_{31},& x_{21} - x_{12}\end{matrix} \right]


where,

.. math:: \theta = \cos^{-1}((\operatorname{Trace}(x) - 1)/2)

Then,

.. math::
   \begin{align*}
   \boxplus(x, \Delta) &= x \exp(\Delta)
   \\
   \boxminus(y, x) &= \log(x^T y)
   \end{align*}

For :math:`\boxplus` and :math:`\boxminus` to be mathematically
consistent, the following identities must be satisfied at all points
:math:`x` on the manifold:

1. :math:`\boxplus(x, 0) = x`. This ensures that the tangent space is
   *centered* at :math:`x`, and the zero vector is the identity
   element.
2. For all :math:`y` on the manifold, :math:`\boxplus(x,
   \boxminus(y,x)) = y`. This ensures that any :math:`y` can be
   reached from math:`x`.
3. For all :math:`\Delta`, :math:`\boxminus(\boxplus(x, \Delta), x) =
   \Delta`. This ensures that :math:`\boxplus` is an injective
   (one-to-one) map.
4. For all :math:`\Delta_1, \Delta_2\ |\boxminus(\boxplus(x, \Delta_1),
   \boxplus(x, \Delta_2)) \leq |\Delta_1 - \Delta_2|`. Allows us to define
   a metric on the manifold.

Additionally we require that :math:`\boxplus` and :math:`\boxminus` be
sufficiently smooth. In particular they need to be differentiable
everywhere on the manifold.

For more details, please see `Integrating Generic Sensor Fusion
Algorithms with Sound State Representations through Encapsulation of
Manifolds <https://arxiv.org/pdf/1107.1119.pdf>`_
By C. Hertzberg, R. Wagner, U. Frese and L. Schroder

The :class:`Manifold` interface allows the user to define a manifold
for the purposes optimization by implementing ``Plus`` and ``Minus``
operations and their derivatives (corresponding naturally to
:math:`\boxplus` and :math:`\boxminus`).

.. code-block:: c++

  class Manifold {
   public:
    virtual ~Manifold();
    virtual int AmbientSize() const = 0;
    virtual int TangentSize() const = 0;
    virtual bool Plus(const double* x,
                      const double* delta,
                      double* x_plus_delta) const = 0;
    virtual bool PlusJacobian(const double* x, double* jacobian) const = 0;
    virtual bool RightMultiplyByPlusJacobian(const double* x,
                                             const int num_rows,
                                             const double* ambient_matrix,
                                             double* tangent_matrix) const;
    virtual bool Minus(const double* y,
                       const double* x,
                       double* y_minus_x) const = 0;
    virtual bool MinusJacobian(const double* x, double* jacobian) const = 0;
  };


.. function:: int Manifold::AmbientSize() const;

   Dimension of the ambient space in which the manifold is embedded.

.. function:: int Manifold::TangentSize() const;

   Dimension of the manifold/tangent space.

.. function:: bool Plus(const double* x, const double* delta, double* x_plus_delta) const;

   Implements the :math:`\boxplus(x,\Delta)` operation for the manifold.

   A generalization of vector addition in Euclidean space, ``Plus``
   computes the result of moving along ``delta`` in the tangent space
   at ``x``, and then projecting back onto the manifold that ``x``
   belongs to.

   ``x`` and ``x_plus_delta`` are :func:`Manifold::AmbientSize` vectors.
   ``delta`` is a :func:`Manifold::TangentSize` vector.

   Return value indicates if the operation was successful or not.

.. function:: bool PlusJacobian(const double* x, double* jacobian) const;

   Compute the derivative of :math:`\boxplus(x, \Delta)` w.r.t
   :math:`\Delta` at :math:`\Delta = 0`, i.e. :math:`(D_2
   \boxplus)(x, 0)`.

   ``jacobian`` is a row-major :func:`Manifold::AmbientSize`
   :math:`\times` :func:`Manifold::TangentSize` matrix.

   Return value indicates whether the operation was successful or not.

.. function:: bool RightMultiplyByPlusJacobian(const double* x, const int num_rows, const double* ambient_matrix, double* tangent_matrix) const;

   ``tangent_matrix`` = ``ambient_matrix`` :math:`\times` plus_jacobian.


   ``ambient_matrix`` is a row-major ``num_rows`` :math:`\times`
   :func:`Manifold::AmbientSize` matrix.

   ``tangent_matrix`` is a row-major ``num_rows`` :math:`\times`
   :func:`Manifold::TangentSize` matrix.

   Return value indicates whether the operation was successful or not.

   This function is only used by the :class:`GradientProblemSolver`,
   where the dimension of the parameter block can be large and it may
   be more efficient to compute this product directly rather than
   first evaluating the Jacobian into a matrix and then doing a matrix
   vector product.

   Because this is not an often used function, we provide a default
   implementation for convenience. If performance becomes an issue
   then the user should consider implementing a specialization.

.. function:: bool Minus(const double* y, const double* x, double* y_minus_x) const;

   Implements :math:`\boxminus(y,x)` operation for the manifold.

   A generalization of vector subtraction in Euclidean spaces, given
   two points ``x`` and ``y`` on the manifold, ``Minus`` computes the
   change to ``x`` in the tangent space at ``x``, that will take it to
   ``y``.

   ``x`` and ``y`` are :func:`Manifold::AmbientSize` vectors.
   ``y_minus_x`` is a ::func:`Manifold::TangentSize` vector.

   Return value indicates if the operation was successful or not.

.. function:: bool MinusJacobian(const double* x, double* jacobian) const = 0;

   Compute the derivative of :math:`\boxminus(y, x)` w.r.t :math:`y`
   at :math:`y = x`, i.e :math:`(D_1 \boxminus) (x, x)`.

   ``jacobian`` is a row-major :func:`Manifold::TangentSize`
   :math:`\times` :func:`Manifold::AmbientSize` matrix.

   Return value indicates whether the operation was successful or not.

Ceres Solver ships with a number of commonly used instances of
:class:`Manifold`.

For `Lie Groups <https://en.wikipedia.org/wiki/Lie_group>`_, a great
place to find high quality implementations is the `Sophus
<https://github.com/strasdat/Sophus>`_ library developed by Hauke
Strasdat and his collaborators.

:class:`EuclideanManifold`
--------------------------

.. class:: EuclideanManifold

:class:`EuclideanManifold` as the name implies represents a Euclidean
space, where the :math:`\boxplus` and :math:`\boxminus` operations are
the usual vector addition and subtraction.

.. math::

   \begin{align*}
     \boxplus(x, \Delta) &= x + \Delta\\
      \boxminus(y,x) &= y - x
   \end{align*}

By default parameter blocks are assumed to be Euclidean, so there is
no need to use this manifold on its own. It is provided for the
purpose of testing and for use in combination with other manifolds
using :class:`ProductManifold`.

The class works with dynamic and static ambient space dimensions. If
the ambient space dimensions is known at compile time use

.. code-block:: c++

   EuclideanManifold<3> manifold;

If the ambient space dimensions is not known at compile time the
template parameter needs to be set to `ceres::DYNAMIC` and the actual
dimension needs to be provided as a constructor argument:

.. code-block:: c++

   EuclideanManifold<ceres::DYNAMIC> manifold(ambient_dim);

:class:`SubsetManifold`
-----------------------

.. class:: SubsetManifold

Suppose :math:`x` is a two dimensional vector, and the user wishes to
hold the first coordinate constant. Then, :math:`\Delta` is a scalar
and :math:`\boxplus` is defined as

.. math::
   \boxplus(x, \Delta) = x + \left[ \begin{array}{c} 0 \\ 1 \end{array} \right] \Delta

and given two, two-dimensional vectors :math:`x` and :math:`y` with
the same first coordinate, :math:`\boxminus` is defined as:

.. math::
   \boxminus(y, x) = y[1] - x[1]

:class:`SubsetManifold` generalizes this construction to hold
any part of a parameter block constant by specifying the set of
coordinates that are held constant.

.. NOTE::

   It is legal to hold *all* coordinates of a parameter block to
   constant using a :class:`SubsetManifold`. It is the same as calling
   :func:`Problem::SetParameterBlockConstant` on that parameter block.


:class:`ProductManifold`
------------------------

.. class:: ProductManifold

In cases, where a parameter block is the Cartesian product of a number
of manifolds and you have the manifold of the individual
parameter blocks available, :class:`ProductManifold` can be used to
construct a :class:`Manifold` of the Cartesian product.

For the case of the rigid transformation, where say you have a
parameter block of size 7, where the first four entries represent the
rotation as a quaternion, and the next three the translation, a
manifold can be constructed as:

.. code-block:: c++

   ProductManifold<QuaternionManifold, EuclideanManifold<3>> se3;

Manifolds can be copied and moved to :class:`ProductManifold`:

.. code-block:: c++

   SubsetManifold manifold1(5, {2});
   SubsetManifold manifold2(3, {0, 1});
   ProductManifold<SubsetManifold, SubsetManifold> manifold(manifold1,
                                                            manifold2);

In advanced use cases, manifolds can be dynamically allocated and passed as (smart) pointers:

.. code-block:: c++

   ProductManifold<std::unique_ptr<QuaternionManifold>, EuclideanManifold<3>> se3
        {std::make_unique<QuaternionManifold>(), EuclideanManifold<3>{}};

In C++17, the template parameters can be left out as they are automatically
deduced making the initialization much simpler:

.. code-block:: c++

   ProductManifold se3{QuaternionManifold{}, EuclideanManifold<3>{}};


:class:`QuaternionManifold`
---------------------------

.. class:: QuaternionManifold

.. NOTE::

   If you are using ``Eigen`` quaternions, then you should use
   :class:`EigenQuaternionManifold` instead because ``Eigen`` uses a
   different memory layout for its Quaternions.

Manifold for a Hamilton `Quaternion
<https://en.wikipedia.org/wiki/Quaternion>`_. Quaternions are a three
dimensional manifold represented as unit norm 4-vectors, i.e.

.. math:: q = \left [\begin{matrix}q_0,& q_1,& q_2,& q_3\end{matrix}\right], \quad \|q\| = 1

is the ambient space representation. Here :math:`q_0` is the scalar
part. :math:`q_1` is the coefficient of :math:`i`, :math:`q_2` is the
coefficient of :math:`j`, and :math:`q_3` is the coeffcient of
:math:`k`. Where:

.. math::

   \begin{align*}
   i\times j &= k,\\
   j\times k &= i,\\
   k\times i &= j,\\
   i\times i &= -1,\\
   j\times j &= -1,\\
   k\times k &= -1.
   \end{align*}

The tangent space is three dimensional and the :math:`\boxplus` and
:math:`\boxminus` operators are defined in term of :math:`\exp` and
:math:`\log` operations.

.. math::
   \begin{align*}
   \boxplus(x, \Delta) &= \exp\left(\Delta\right) \otimes  x \\
   \boxminus(y,x) &= \log\left(y \otimes x^{-1}\right)
   \end{align*}

Where :math:`\otimes` is the `Quaternion product
<https://en.wikipedia.org/wiki/Quaternion#Hamilton_product>`_ and
since :math:`x` is a unit quaternion, :math:`x^{-1} = [\begin{matrix}
q_0,& -q_1,& -q_2,& -q_3\end{matrix}]`. Given a vector :math:`\Delta
\in \mathbb{R}^3`,

.. math::
   \exp(\Delta) = \left[ \begin{matrix}
                         \cos\left(\|\Delta\|\right)\\
			 \frac{\displaystyle \sin\left(|\Delta\|\right)}{\displaystyle \|\Delta\|} \Delta
    	                 \end{matrix} \right]

and given a unit quaternion :math:`q = \left [\begin{matrix}q_0,& q_1,& q_2,& q_3\end{matrix}\right]`

.. math::

   \log(q) =  \frac{\operatorname{atan2}\left(\sqrt{1-q_0^2},q_0\right)}{\sqrt{1-q_0^2}} \left [\begin{matrix}q_1,& q_2,& q_3\end{matrix}\right]


:class:`EigenQuaternionManifold`
--------------------------------

.. class:: EigenQuaternionManifold

Implements the quaternion manifold for `Eigen's
<http://eigen.tuxfamily.org/index.php?title=Main_Page>`_
representation of the Hamilton quaternion. Geometrically it is exactly
the same as the :class:`QuaternionManifold` defined above. However,
Eigen uses a different internal memory layout for the elements of the
quaternion than what is commonly used. It stores the quaternion in
memory as :math:`[q_1, q_2, q_3, q_0]` or :math:`[x, y, z, w]` where
the real (scalar) part is last.

Since Ceres operates on parameter blocks which are raw double pointers
this difference is important and requires a different manifold.

:class:`SphereManifold`
-----------------------

.. class:: SphereManifold

This provides a manifold on a sphere meaning that the norm of the
vector stays the same. Such cases often arises in Structure for Motion
problems. One example where they are used is in representing points
whose triangulation is ill-conditioned. Here it is advantageous to use
an over-parameterization since homogeneous vectors can represent
points at infinity.

The ambient space dimension is required to be greater than 1.

The class works with dynamic and static ambient space dimensions. If
the ambient space dimensions is known at compile time use

.. code-block:: c++

   SphereManifold<3> manifold;

If the ambient space dimensions is not known at compile time the
template parameter needs to be set to `ceres::DYNAMIC` and the actual
dimension needs to be provided as a constructor argument:

.. code-block:: c++

   SphereManifold<ceres::DYNAMIC> manifold(ambient_dim);

For more details, please see Section B.2 (p.25) in `Integrating
Generic Sensor Fusion Algorithms with Sound State Representations
through Encapsulation of Manifolds
<https://arxiv.org/pdf/1107.1119.pdf>`_
By C. Hertzberg, R. Wagner, U. Frese and L. Schroder


:class:`LineManifold`
---------------------

.. class:: LineManifold

This class provides a manifold for lines, where the line is defined
using an origin point and a direction vector. So the ambient size
needs to be two times the dimension of the space in which the line
lives.  The first half of the parameter block is interpreted as the
origin point and the second half as the direction. This manifold is a
special case of the `Affine Grassmannian manifold
<https://en.wikipedia.org/wiki/Affine_Grassmannian_(manifold))>`_ for
the case :math:`\operatorname{Graff}_1(R^n)`.

Note that this is a manifold for a line, rather than a point
constrained to lie on a line. It is useful when one wants to optimize
over the space of lines. For example, given :math:`n` distinct points
in 3D (measurements) we want to find the line that minimizes the sum
of squared distances to all the points.

:class:`AutoDiffManifold`
=========================

.. class:: AutoDiffManifold

Create a :class:`Manifold` with Jacobians computed via automatic
differentiation.

To get an auto differentiated manifold, you must define a Functor with
templated ``Plus`` and ``Minus`` functions that compute:

.. code-block:: c++

  x_plus_delta = Plus(x, delta);
  y_minus_x    = Minus(y, x);

Where, ``x``, ``y`` and ``x_plus_y`` are vectors on the manifold in
the ambient space (so they are ``kAmbientSize`` vectors) and
``delta``, ``y_minus_x`` are vectors in the tangent space (so they are
``kTangentSize`` vectors).

The Functor should have the signature:

.. code-block:: c++

   struct Functor {
    template <typename T>
    bool Plus(const T* x, const T* delta, T* x_plus_delta) const;

    template <typename T>
    bool Minus(const T* y, const T* x, T* y_minus_x) const;
   };


Observe that  the ``Plus`` and  ``Minus`` operations are  templated on
the parameter  ``T``.  The autodiff framework  substitutes appropriate
``Jet``  objects for  ``T`` in  order to  compute the  derivative when
necessary.  This  is  the  same  mechanism that  is  used  to  compute
derivatives when using :class:`AutoDiffCostFunction`.

``Plus`` and ``Minus`` should return true if the computation is
successful and false otherwise, in which case the result will not be
used.

Given this Functor, the corresponding :class:`Manifold` can be constructed as:

.. code-block:: c++

   AutoDiffManifold<Functor, kAmbientSize, kTangentSize> manifold;

.. NOTE::

   The following is only used for illustration purposes. Ceres Solver
   ships with an optimized, production grade :class:`QuaternionManifold`
   implementation.

As a concrete example consider the case of `Quaternions
<https://en.wikipedia.org/wiki/Quaternion>`_. Quaternions form a three
dimensional manifold embedded in :math:`\mathbb{R}^4`, i.e. they have
an ambient dimension of 4 and their tangent space has dimension 3. The
following Functor defines the ``Plus`` and ``Minus`` operations on the
Quaternion manifold. It assumes that the quaternions are laid out as
``[w,x,y,z]`` in memory, i.e. the real or scalar part is the first
coordinate.

.. code-block:: c++

   struct QuaternionFunctor {
     template <typename T>
     bool Plus(const T* x, const T* delta, T* x_plus_delta) const {
       const T squared_norm_delta =
           delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];

       T q_delta[4];
       if (squared_norm_delta > T(0.0)) {
         T norm_delta = sqrt(squared_norm_delta);
         const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
         q_delta[0] = cos(norm_delta);
         q_delta[1] = sin_delta_by_delta * delta[0];
         q_delta[2] = sin_delta_by_delta * delta[1];
         q_delta[3] = sin_delta_by_delta * delta[2];
       } else {
         // We do not just use q_delta = [1,0,0,0] here because that is a
         // constant and when used for automatic differentiation will
         // lead to a zero derivative. Instead we take a first order
         // approximation and evaluate it at zero.
         q_delta[0] = T(1.0);
         q_delta[1] = delta[0];
         q_delta[2] = delta[1];
         q_delta[3] = delta[2];
       }

       QuaternionProduct(q_delta, x, x_plus_delta);
       return true;
     }

     template <typename T>
     bool Minus(const T* y, const T* x, T* y_minus_x) const {
       T minus_x[4] = {x[0], -x[1], -x[2], -x[3]};
       T ambient_y_minus_x[4];
       QuaternionProduct(y, minus_x, ambient_y_minus_x);
       T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] +
		       ambient_y_minus_x[2] * ambient_y_minus_x[2] +
		       ambient_y_minus_x[3] * ambient_y_minus_x[3]);
       if (u_norm > 0.0) {
	 T theta = atan2(u_norm, ambient_y_minus_x[0]);
	 y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm;
	 y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm;
	 y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm;
       } else {
	 We do not use [0,0,0] here because even though the value part is
	 a constant, the derivative part is not.
	 y_minus_x[0] = ambient_y_minus_x[1];
	 y_minus_x[1] = ambient_y_minus_x[2];
	 y_minus_x[2] = ambient_y_minus_x[3];
       }
       return true;
     }
   };


Then given this struct, the auto differentiated Quaternion Manifold can now
be constructed as

.. code-block:: c++

   Manifold* manifold = new AutoDiffManifold<QuaternionFunctor, 4, 3>;


:class:`LocalParameterization`
==============================

.. NOTE::

   The :class:`LocalParameterization` interface and associated classes
   are deprecated. They will be removed in the version 2.2.0. Please use
   :class:`Manifold` instead.

.. class:: LocalParameterization

  In many optimization problems, especially sensor fusion problems,
  one has to model quantities that live in spaces known as `Manifolds
  <https://en.wikipedia.org/wiki/Manifold>`_ , for example the
  rotation/orientation of a sensor that is represented by a
  `Quaternion
  <https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation>`_.

  Manifolds are spaces, which locally look like Euclidean spaces. More
  precisely, at each point on the manifold there is a linear space
  that is tangent to the manifold. It has dimension equal to the
  intrinsic dimension of the manifold itself, which is less than or
  equal to the ambient space in which the manifold is embedded.

  For example, the tangent space to a point on a sphere in three
  dimensions is the two dimensional plane that is tangent to the
  sphere at that point. There are two reasons tangent spaces are
  interesting:

  1. They are Euclidean spaces, so the usual vector space operations
     apply there, which makes numerical operations easy.

  2. Movement in the tangent space translate into movements along the
     manifold.  Movements perpendicular to the tangent space do not
     translate into movements on the manifold.

  Moving along the 2 dimensional plane tangent to the sphere and
  projecting back onto the sphere will move you away from the point
  you started from but moving along the normal at the same point and
  the projecting back onto the sphere brings you back to the point.

  Besides the mathematical niceness, modeling manifold valued
  quantities correctly and paying attention to their geometry has
  practical benefits too:

  1. It naturally constrains the quantity to the manifold throughout
     the optimization, freeing the user from hacks like *quaternion
     normalization*.

  2. It reduces the dimension of the optimization problem to its
     *natural* size. For example, a quantity restricted to a line, is a
     one dimensional object regardless of the dimension of the ambient
     space in which this line lives.

     Working in the tangent space reduces not just the computational
     complexity of the optimization algorithm, but also improves its
     numerical behaviour of the algorithm.

  A basic operation one can perform on a manifold is the
  :math:`\boxplus` operation that computes the result of moving along
  delta in the tangent space at x, and then projecting back onto the
  manifold that x belongs to. Also known as a *Retraction*,
  :math:`\boxplus` is a generalization of vector addition in Euclidean
  spaces. Formally, :math:`\boxplus` is a smooth map from a
  manifold :math:`\mathcal{M}` and its tangent space
  :math:`T_\mathcal{M}` to the manifold :math:`\mathcal{M}` that
  obeys the identity

  .. math::  \boxplus(x, 0) = x,\quad \forall x.

  That is, it ensures that the tangent space is *centered* at :math:`x`
  and the zero vector is the identity element. For more see
  [Hertzberg]_ and section A.6.9 of [HartleyZisserman]_.

  Let us consider two examples:

  The Euclidean space :math:`\mathbb{R}^n` is the simplest example of a
  manifold. It has dimension :math:`n` (and so does its tangent space)
  and :math:`\boxplus` is the familiar vector sum operation.

    .. math:: \boxplus(x, \Delta) = x + \Delta

  A more interesting case is :math:`SO(3)`, the special orthogonal
  group in three dimensions - the space of :math:`3\times3` rotation
  matrices. :math:`SO(3)` is a three dimensional manifold embedded in
  :math:`\mathbb{R}^9` or :math:`\mathbb{R}^{3\times 3}`.

  :math:`\boxplus` on :math:`SO(3)` is defined using the *Exponential*
  map, from the tangent space (:math:`\mathbb{R}^3`) to the manifold. The
  Exponential map :math:`\operatorname{Exp}` is defined as:

  .. math::

     \operatorname{Exp}([p,q,r]) = \left [ \begin{matrix}
     \cos \theta + cp^2 & -sr + cpq        &  sq + cpr \\
     sr + cpq         & \cos \theta + cq^2& -sp + cqr \\
     -sq + cpr        & sp + cqr         & \cos \theta + cr^2
     \end{matrix} \right ]

  where,

  .. math::
     \theta = \sqrt{p^2 + q^2 + r^2}, s = \frac{\sin \theta}{\theta},
     c = \frac{1 - \cos \theta}{\theta^2}.

  Then,

  .. math::

     \boxplus(x, \Delta) = x \operatorname{Exp}(\Delta)

  The ``LocalParameterization`` interface allows the user to define
  and associate with parameter blocks the manifold that they belong
  to. It does so by defining the ``Plus`` (:math:`\boxplus`) operation
  and its derivative with respect to :math:`\Delta` at :math:`\Delta =
  0`.

   .. code-block:: c++

     class LocalParameterization {
      public:
       virtual ~LocalParameterization() = default;
       virtual bool Plus(const double* x,
                         const double* delta,
                         double* x_plus_delta) const = 0;
       virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
       virtual bool MultiplyByJacobian(const double* x,
                                       const int num_rows,
                                       const double* global_matrix,
                                       double* local_matrix) const;
       virtual int GlobalSize() const = 0;
       virtual int LocalSize() const = 0;
     };


.. function:: int LocalParameterization::GlobalSize()

   The dimension of the ambient space in which the parameter block
   :math:`x` lives.

.. function:: int LocalParameterization::LocalSize()

   The size of the tangent space that :math:`\Delta` lives in.

.. function:: bool LocalParameterization::Plus(const double* x, const double* delta, double* x_plus_delta) const

    :func:`LocalParameterization::Plus` implements :math:`\boxplus(x,\Delta)`.

.. function:: bool LocalParameterization::ComputeJacobian(const double* x, double* jacobian) const

   Computes the Jacobian matrix

   .. math:: J = D_2 \boxplus(x, 0)

   in row major form.

.. function:: bool MultiplyByJacobian(const double* x, const int num_rows, const double* global_matrix, double* local_matrix) const

   ``local_matrix = global_matrix * jacobian``

   ``global_matrix`` is a ``num_rows x GlobalSize``  row major matrix.
   ``local_matrix`` is a ``num_rows x LocalSize`` row major matrix.
   ``jacobian`` is the matrix returned by :func:`LocalParameterization::ComputeJacobian` at :math:`x`.

   This is only used by :class:`GradientProblem`. For most normal
   uses, it is okay to use the default implementation.

Ceres Solver ships with a number of commonly used instances of
:class:`LocalParameterization`. Another great place to find high
quality implementations of :math:`\boxplus` operations on a variety of
manifolds is the `Sophus <https://github.com/strasdat/Sophus>`_
library developed by Hauke Strasdat and his collaborators.

:class:`IdentityParameterization`
---------------------------------

.. NOTE::

   :class:`IdentityParameterization` is deprecated. It will be removed
   in version 2.2.0 of Ceres Solver. Please use
   :class:`EuclideanManifold` instead.

.. class:: IdentityParameterization

A trivial version of :math:`\boxplus` is when :math:`\Delta` is of the
same size as :math:`x` and

.. math::  \boxplus(x, \Delta) = x + \Delta

This is the same as :math:`x` living in a Euclidean manifold.

:class:`QuaternionParameterization`
-----------------------------------

.. NOTE::

   :class:`QuaternionParameterization` is deprecated. It will be
   removed in version 2.2.0 of Ceres Solver. Please use
   :class:`QuaternionManifold` instead.

.. class:: QuaternionParameterization

Another example that occurs commonly in Structure from Motion problems
is when camera rotations are parameterized using a quaternion. This is
a 3-dimensional manifold that lives in 4-dimensional space.

.. math:: \boxplus(x, \Delta) = \left[ \cos(|\Delta|), \frac{\sin\left(|\Delta|\right)}{|\Delta|} \Delta \right] \otimes x

The multiplication :math:`\otimes` between the two 4-vectors on the right
hand side is the standard quaternion product.

:class:`EigenQuaternionParameterization`
----------------------------------------

.. NOTE::

   :class:`EigenQuaternionParameterization` is deprecated. It will be
   removed in version 2.2.0 of Ceres Solver. Please use
   :class:`EigenQuaternionManifold` instead.

.. class:: EigenQuaternionParameterization

`Eigen <http://eigen.tuxfamily.org/index.php?title=Main_Page>`_ uses a
different internal memory layout for the elements of the quaternion
than what is commonly used. Specifically, Eigen stores the elements in
memory as :math:`(x, y, z, w)`, i.e., the *real* part (:math:`w`) is
stored as the last element. Note, when creating an Eigen quaternion
through the constructor the elements are accepted in :math:`w, x, y,
z` order.

Since Ceres operates on parameter blocks which are raw ``double``
pointers this difference is important and requires a different
parameterization. :class:`EigenQuaternionParameterization` uses the
same ``Plus`` operation as :class:`QuaternionParameterization` but
takes into account Eigen's internal memory element ordering.

:class:`SubsetParameterization`
-------------------------------

.. NOTE::

   :class:`SubsetParameterization` is deprecated. It will be removed
   in version 2.2.0 of Ceres Solver. Please use
   :class:`SubsetManifold` instead.

.. class:: SubsetParameterization

Suppose :math:`x` is a two dimensional vector, and the user wishes to
hold the first coordinate constant. Then, :math:`\Delta` is a scalar
and :math:`\boxplus` is defined as

.. math:: \boxplus(x, \Delta) = x + \left[ \begin{array}{c} 0 \\ 1 \end{array} \right] \Delta

:class:`SubsetParameterization` generalizes this construction to hold
any part of a parameter block constant by specifying the set of
coordinates that are held constant.

.. NOTE::
   It is legal to hold all coordinates of a parameter block to constant
   using a :class:`SubsetParameterization`. It is the same as calling
   :func:`Problem::SetParameterBlockConstant` on that parameter block.

:class:`HomogeneousVectorParameterization`
------------------------------------------

.. NOTE::

   :class:`HomogeneousVectorParameterization` is deprecated. It will
   be removed in version 2.2.0 of Ceres Solver. Please use
   :class:`SphereManifold` instead.

.. class:: HomogeneousVectorParameterization

In computer vision, homogeneous vectors are commonly used to represent
objects in projective geometry such as points in projective space. One
example where it is useful to use this over-parameterization is in
representing points whose triangulation is ill-conditioned. Here it is
advantageous to use homogeneous vectors, instead of an Euclidean
vector, because it can represent points at and near infinity.

:class:`HomogeneousVectorParameterization` defines a
:class:`LocalParameterization` for an :math:`n-1` dimensional
manifold that embedded in :math:`n` dimensional space where the
scale of the vector does not matter, i.e., elements of the
projective space :math:`\mathbb{P}^{n-1}`. It assumes that the last
coordinate of the :math:`n`-vector is the *scalar* component of the
homogenous vector, i.e., *finite* points in this representation are
those for which the *scalar* component is non-zero.

Further, ``HomogeneousVectorParameterization::Plus`` preserves the
scale of :math:`x`.

:class:`LineParameterization`
-----------------------------

.. NOTE::

   :class:`LineParameterization` is deprecated. It will be removed in
   version 2.2.0 of Ceres Solver. Please use :class:`LineManifold`
   instead.

.. class:: LineParameterization

This class provides a parameterization for lines, where the line is
defined using an origin point and a direction vector. So the
parameter vector size needs to be two times the ambient space
dimension, where the first half is interpreted as the origin point
and the second half as the direction. This local parameterization is
a special case of the `Affine Grassmannian manifold
<https://en.wikipedia.org/wiki/Affine_Grassmannian_(manifold))>`_
for the case :math:`\operatorname{Graff}_1(R^n)`.

Note that this is a parameterization for a line, rather than a point
constrained to lie on a line. It is useful when one wants to optimize
over the space of lines. For example, :math:`n` distinct points in 3D
(measurements) we want to find the line that minimizes the sum of
squared distances to all the points.

:class:`ProductParameterization`
--------------------------------

.. NOTE::

   :class:`ProductParameterization` is deprecated. It will be removed
   in version 2.2.0 of Ceres Solver. Please use
   :class:`ProductManifold` instead.

.. class:: ProductParameterization

Consider an optimization problem over the space of rigid
transformations :math:`SE(3)`, which is the Cartesian product of
:math:`SO(3)` and :math:`\mathbb{R}^3`. Suppose you are using
Quaternions to represent the rotation, Ceres ships with a local
parameterization for that and :math:`\mathbb{R}^3` requires no, or
:class:`IdentityParameterization` parameterization. So how do we
construct a local parameterization for a parameter block a rigid
transformation?

In cases, where a parameter block is the Cartesian product of a number
of manifolds and you have the local parameterization of the individual
manifolds available, :class:`ProductParameterization` can be used to
construct a local parameterization of the Cartesian product. For the
case of the rigid transformation, where say you have a parameter block
of size 7, where the first four entries represent the rotation as a
quaternion, a local parameterization can be constructed as

.. code-block:: c++

   ProductParameterization se3_param(new QuaternionParameterization(),
                                     new IdentityParameterization(3));


:class:`AutoDiffLocalParameterization`
======================================

.. NOTE::

   :class:`AutoDiffParameterization` is deprecated. It will be removed
   in version 2.2.0 of Ceres Solver. Please use
   :class:`AutoDiffManifold` instead.

.. class:: AutoDiffLocalParameterization

  :class:`AutoDiffLocalParameterization` does for
  :class:`LocalParameterization` what :class:`AutoDiffCostFunction`
  does for :class:`CostFunction`. It allows the user to define a
  templated functor that implements the
  :func:`LocalParameterization::Plus` operation and it uses automatic
  differentiation to implement the computation of the Jacobian.

  To get an auto differentiated local parameterization, you must
  define a class with a templated operator() (a functor) that computes

     .. math:: x' = \boxplus(x, \Delta x),

  For example, Quaternions have a three dimensional local
  parameterization. Its plus operation can be implemented as (taken
  from `internal/ceres/autodiff_local_parameterization_test.cc
  <https://ceres-solver.googlesource.com/ceres-solver/+/master/internal/ceres/autodiff_local_parameterization_test.cc>`_
  )

    .. code-block:: c++

      struct QuaternionPlus {
        template<typename T>
        bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
          const T squared_norm_delta =
              delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];

          T q_delta[4];
          if (squared_norm_delta > 0.0) {
            T norm_delta = sqrt(squared_norm_delta);
            const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
            q_delta[0] = cos(norm_delta);
            q_delta[1] = sin_delta_by_delta * delta[0];
            q_delta[2] = sin_delta_by_delta * delta[1];
            q_delta[3] = sin_delta_by_delta * delta[2];
          } else {
            // We do not just use q_delta = [1,0,0,0] here because that is a
            // constant and when used for automatic differentiation will
            // lead to a zero derivative. Instead we take a first order
            // approximation and evaluate it at zero.
            q_delta[0] = T(1.0);
            q_delta[1] = delta[0];
            q_delta[2] = delta[1];
            q_delta[3] = delta[2];
          }

          Quaternionproduct(q_delta, x, x_plus_delta);
          return true;
        }
      };

  Given this struct, the auto differentiated local
  parameterization can now be constructed as

  .. code-block:: c++

     LocalParameterization* local_parameterization =
         new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>;
                                                           |  |
                                Global Size ---------------+  |
                                Local Size -------------------+



:class:`Problem`
================

.. class:: Problem

   .. NOTE:: We are currently in the process of transitioning from
      :class:`LocalParameterization` to :class:`Manifolds` in the
      Ceres Solver API. During this period, :class:`Problem` will
      support using both :class:`Manifold` and
      :class:`LocalParameterization` objects interchangably. In
      particular, adding a :class:`LocalParameterization` to a
      parameter block is the same as adding a :class:`Manifold` to
      that parameter block. For methods in the API affected by this
      change, see their documentation below.

   :class:`Problem` holds the robustified bounds constrained
   non-linear least squares problem :eq:`ceresproblem_modeling`. To
   create a least squares problem, use the
   :func:`Problem::AddResidalBlock` and
   :func:`Problem::AddParameterBlock` methods.

   For example a problem containing 3 parameter blocks of sizes 3, 4
   and 5 respectively and two residual blocks of size 2 and 6:

   .. code-block:: c++

     double x1[] = { 1.0, 2.0, 3.0 };
     double x2[] = { 1.0, 2.0, 3.0, 5.0 };
     double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };

     Problem problem;
     problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);
     problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);

   :func:`Problem::AddResidualBlock` as the name implies, adds a
   residual block to the problem. It adds a :class:`CostFunction`, an
   optional :class:`LossFunction` and connects the
   :class:`CostFunction` to a set of parameter block.

   The cost function carries with it information about the sizes of
   the parameter blocks it expects. The function checks that these
   match the sizes of the parameter blocks listed in
   ``parameter_blocks``. The program aborts if a mismatch is
   detected. ``loss_function`` can be ``nullptr``, in which case the cost
   of the term is just the squared norm of the residuals.

   The user has the option of explicitly adding the parameter blocks
   using :func:`Problem::AddParameterBlock`. This causes additional
   correctness checking; however, :func:`Problem::AddResidualBlock`
   implicitly adds the parameter blocks if they are not present, so
   calling :func:`Problem::AddParameterBlock` explicitly is not
   required.

   :func:`Problem::AddParameterBlock` explicitly adds a parameter
   block to the :class:`Problem`. Optionally it allows the user to
   associate a :class:`Manifold` object with the parameter block
   too. Repeated calls with the same arguments are ignored. Repeated
   calls with the same double pointer but a different size results in
   undefined behavior.

   You can set any parameter block to be constant using
   :func:`Problem::SetParameterBlockConstant` and undo this using
   :func:`SetParameterBlockVariable`.

   In fact you can set any number of parameter blocks to be constant,
   and Ceres is smart enough to figure out what part of the problem
   you have constructed depends on the parameter blocks that are free
   to change and only spends time solving it. So for example if you
   constructed a problem with a million parameter blocks and 2 million
   residual blocks, but then set all but one parameter blocks to be
   constant and say only 10 residual blocks depend on this one
   non-constant parameter block. Then the computational effort Ceres
   spends in solving this problem will be the same if you had defined
   a problem with one parameter block and 10 residual blocks.

   **Ownership**

   :class:`Problem` by default takes ownership of the
   ``cost_function``, ``loss_function``, ``local_parameterization``,
   and ``manifold`` pointers. These objects remain live for the life
   of the :class:`Problem`. If the user wishes to keep control over
   the destruction of these objects, then they can do this by setting
   the corresponding enums in the :class:`Problem::Options` struct.

   Note that even though the Problem takes ownership of objects,
   ``cost_function`` and ``loss_function``, it does not preclude the
   user from re-using them in another residual block. Similarly the
   same ``local_parameterization`` or ``manifold`` object can be used
   with multiple parameter blocks. The destructor takes care to call
   delete on each owned object exactly once.

.. class:: Problem::Options

   Options struct that is used to control :class:`Problem`.

.. member:: Ownership Problem::Options::cost_function_ownership

   Default: ``TAKE_OWNERSHIP``

   This option controls whether the Problem object owns the cost
   functions.

   If set to ``TAKE_OWNERSHIP``, then the problem object will delete the
   cost functions on destruction. The destructor is careful to delete
   the pointers only once, since sharing cost functions is allowed.

.. member:: Ownership Problem::Options::loss_function_ownership

   Default: ``TAKE_OWNERSHIP``

   This option controls whether the Problem object owns the loss
   functions.

   If set to ``TAKE_OWNERSHIP``, then the problem object will delete the
   loss functions on destruction. The destructor is careful to delete
   the pointers only once, since sharing loss functions is allowed.

.. member:: Ownership Problem::Options::local_parameterization_ownership

   .. NOTE::

      `Problem::Options::local_parameterization_ownership` is
      deprecated. It will be removed in Ceres Solver version
      2.2.0. Please move to using Manifolds and use
      `Problem::Options::manifold_ownership` instead.

   Default: ``TAKE_OWNERSHIP``

   This option controls whether the Problem object owns the local
   parameterizations.

   If set to ``TAKE_OWNERSHIP``, then the problem object will delete the
   local parameterizations on destruction. The destructor is careful
   to delete the pointers only once, since sharing local
   parameterizations is allowed.

.. member:: Ownership Problem::Options::manifold_ownership

   Default: ``TAKE_OWNERSHIP``

   This option controls whether the Problem object owns the manifolds.

   If set to ``TAKE_OWNERSHIP``, then the problem object will delete the
   manifolds on destruction. The destructor is careful to delete the
   pointers only once, since sharing manifolds is allowed.

.. member:: bool Problem::Options::enable_fast_removal

    Default: ``false``

    If true, trades memory for faster
    :func:`Problem::RemoveResidualBlock` and
    :func:`Problem::RemoveParameterBlock` operations.

    By default, :func:`Problem::RemoveParameterBlock` and
    :func:`Problem::RemoveResidualBlock` take time proportional to
    the size of the entire problem.  If you only ever remove
    parameters or residuals from the problem occasionally, this might
    be acceptable.  However, if you have memory to spare, enable this
    option to make :func:`Problem::RemoveParameterBlock` take time
    proportional to the number of residual blocks that depend on it,
    and :func:`Problem::RemoveResidualBlock` take (on average)
    constant time.

    The increase in memory usage is twofold: an additional hash set
    per parameter block containing all the residuals that depend on
    the parameter block; and a hash set in the problem containing all
    residuals.

.. member:: bool Problem::Options::disable_all_safety_checks

    Default: `false`

    By default, Ceres performs a variety of safety checks when
    constructing the problem. There is a small but measurable
    performance penalty to these checks, typically around 5% of
    construction time. If you are sure your problem construction is
    correct, and 5% of the problem construction time is truly an
    overhead you want to avoid, then you can set
    disable_all_safety_checks to true.

    .. warning::
        Do not set this to true, unless you are absolutely sure of what you are
        doing.

.. member:: Context* Problem::Options::context

    Default: ``nullptr``

    A Ceres global context to use for solving this problem. This may
    help to reduce computation time as Ceres can reuse expensive
    objects to create.  The context object can be `nullptr`, in which
    case Ceres may create one.

    Ceres does NOT take ownership of the pointer.

.. member:: EvaluationCallback* Problem::Options::evaluation_callback

    Default: ``nullptr``

    Using this callback interface, Ceres will notify you when it is
    about to evaluate the residuals or Jacobians.

    If an ``evaluation_callback`` is present, Ceres will update the
    user's parameter blocks to the values that will be used when
    calling :func:`CostFunction::Evaluate` before calling
    :func:`EvaluationCallback::PrepareForEvaluation`. One can then use
    this callback to share (or cache) computation between cost
    functions by doing the shared computation in
    :func:`EvaluationCallback::PrepareForEvaluation` before Ceres
    calls :func:`CostFunction::Evaluate`.

    Problem does NOT take ownership of the callback.

    .. NOTE::

       Evaluation callbacks are incompatible with inner iterations. So
       calling Solve with
       :member:`Solver::Options::use_inner_iterations` set to ``true``
       on a :class:`Problem` with a non-null evaluation callback is an
       error.

.. function:: ResidualBlockId Problem::AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, const vector<double*> parameter_blocks)

.. function:: template <typename Ts...> ResidualBlockId Problem::AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, Ts... xs)

   Add a residual block to the overall cost function. The cost
   function carries with it information about the sizes of the
   parameter blocks it expects. The function checks that these match
   the sizes of the parameter blocks listed in parameter_blocks. The
   program aborts if a mismatch is detected. loss_function can be
   ``nullptr``, in which case the cost of the term is just the squared
   norm of the residuals.

   The parameter blocks may be passed together as a
   ``vector<double*>``, or ``double*`` pointers.

   The user has the option of explicitly adding the parameter blocks
   using AddParameterBlock. This causes additional correctness
   checking; however, AddResidualBlock implicitly adds the parameter
   blocks if they are not present, so calling AddParameterBlock
   explicitly is not required.

   The Problem object by default takes ownership of the
   cost_function and loss_function pointers. These objects remain
   live for the life of the Problem object. If the user wishes to
   keep control over the destruction of these objects, then they can
   do this by setting the corresponding enums in the Options struct.

   .. note::
       Even though the Problem takes ownership of ``cost_function``
       and ``loss_function``, it does not preclude the user from re-using
       them in another residual block. The destructor takes care to call
       delete on each cost_function or loss_function pointer only once,
       regardless of how many residual blocks refer to them.

   Example usage:

   .. code-block:: c++

      double x1[] = {1.0, 2.0, 3.0};
      double x2[] = {1.0, 2.0, 5.0, 6.0};
      double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};
      vector<double*> v1;
      v1.push_back(x1);
      vector<double*> v2;
      v2.push_back(x2);
      v2.push_back(x1);

      Problem problem;

      problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, x1);
      problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, x2, x1);
      problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, v1);
      problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, v2);

.. function:: void Problem::AddParameterBlock(double* values, int size, LocalParameterization* local_parameterization)

   .. NOTE::

       This method is deprecated and will be removed in Ceres Solver
       version 2.2.0. Please move to using the :class:`Manifold` based version
       of `AddParameterBlock`.

       During the transition from :class:`LocalParameterization` to
       :class:`Manifold`, internally the
       :class:`LocalParameterization` is treated as a
       :class:`Manifold` by wrapping it using a `ManifoldAdapter`
       object. So :func:`Problem::HasManifold` will return true,
       :func:`Problem::GetManifold` will return the wrapped object and
       :func:`Problem::ParameterBlockTangentSize` will return the value of
       :func:`LocalParameterization::LocalSize`.

   Add a parameter block with appropriate size and parameterization to the
   problem. It is okay for ``local_parameterization`` to be ``nullptr``.

   Repeated calls with the same arguments are ignored. Repeated calls
   with the same double pointer but a different size results in a crash
   (unless :member:`Solver::Options::diable_all_safety_checks` is set to ``true``).

   Repeated calls with the same double pointer and size but different
   :class:`LocalParameterization` is equivalent to calling
   `SetParameterization(local_parameterization)`, i.e., any previously
   associated :class:`LocalParameterization` or :class:`Manifold`
   object will be replaced with the `local_parameterization`.


.. function:: void Problem::AddParameterBlock(double* values, int size, Manifold* manifold)

   .. NOTE::

      During the transition from :class:`LocalParameterization` to
      :class:`Manifold`, calling `AddParameterBlock` with a
      :class:`Manifold` when a :class:`LocalParameterization` is
      already associated with the parameter block is okay. It is
      equivalent to calling `SetManifold(manifold)`, i.e., any
      previously associated :class:`LocalParameterization` or
      :class:`Manifold` object will be replaced with the manifold.

   Add a parameter block with appropriate size and Manifold to the
   problem. It is okay for ``manifold`` to be ``nullptr``.

   Repeated calls with the same arguments are ignored. Repeated calls
   with the same double pointer but a different size results in a crash
   (unless :member:`Solver::Options::diable_all_safety_checks` is set to true).

   Repeated calls with the same double pointer and size but different
   :class:`Manifold` is equivalent to calling `SetManifold(manifold)`,
   i.e., any previously associated :class:`LocalParameterization` or
   :class:`Manifold` object will be replaced with the `manifold`.

.. function:: void Problem::AddParameterBlock(double* values, int size)

   Add a parameter block with appropriate size and parameterization to
   the problem. Repeated calls with the same arguments are
   ignored. Repeated calls with the same double pointer but a
   different size results in undefined behavior.

.. function:: void Problem::RemoveResidualBlock(ResidualBlockId residual_block)

   Remove a residual block from the problem.

   Since residual blocks are allowed to share cost function and loss
   function objects, Ceres Solver uses a reference counting
   mechanism. So when a residual block is deleted, the reference count
   for the corresponding cost function and loss function objects are
   decreased and when this count reaches zero, they are deleted.

   If :member:`Problem::Options::enable_fast_removal` is ``true``, then the removal
   is fast (almost constant time). Otherwise it is linear, requiring a
   scan of the entire problem.

   Removing a residual block has no effect on the parameter blocks
   that the problem depends on.

   .. warning::
       Removing a residual or parameter block will destroy the implicit
       ordering, rendering the jacobian or residuals returned from the solver
       uninterpretable. If you depend on the evaluated jacobian, do not use
       remove! This may change in a future release. Hold the indicated parameter
       block constant during optimization.

.. function:: void Problem::RemoveParameterBlock(const double* values)

   Remove a parameter block from the problem. Any residual blocks that
   depend on the parameter are also removed, as described above in
   :func:`RemoveResidualBlock()`.

   The parameterization of the parameter block, if it exists, will
   persist until the deletion of the problem.

   If :member:`Problem::Options::enable_fast_removal` is ``true``, then the removal
   is fast (almost constant time). Otherwise, removing a parameter
   block will scan the entire Problem.

   .. warning::
       Removing a residual or parameter block will destroy the implicit
       ordering, rendering the jacobian or residuals returned from the solver
       uninterpretable. If you depend on the evaluated jacobian, do not use
       remove! This may change in a future release.

.. function:: void Problem::SetParameterBlockConstant(const double* values)

   Hold the indicated parameter block constant during optimization.

.. function:: void Problem::SetParameterBlockVariable(double* values)

   Allow the indicated parameter to vary during optimization.

.. function:: bool Problem::IsParameterBlockConstant(const double* values) const

   Returns ``true`` if a parameter block is set constant, and false
   otherwise. A parameter block may be set constant in two ways:
   either by calling ``SetParameterBlockConstant`` or by associating a
   :class:`LocalParameterization` or :class:`Manifold` with a zero
   dimensional tangent space with it.

.. function:: void Problem::SetParameterization(double* values, LocalParameterization* local_parameterization)

   .. NOTE::

      This method is deprecated and will be removed in Ceres Solver
      version 2.2.0. Please move to using the SetManifold instead.

      During the transition from :class:`LocalParameterization` to
      :class:`Manifold`, calling `AddParameterBlock` with a
      :class:`Manifold` when a :class:`LocalParameterization` is
      already associated with the parameter block is okay. It is
      equivalent to calling `SetManifold(manifold)`, i.e., any
      previously associated :class:`LocalParameterization` or
      :class:`Manifold` object will be replaced with the manifold.

   Set the :class:`LocalParameterization` for the parameter
   block. Calling :func:`Problem::SetParameterization` with
   ``nullptr`` will clear any previously set
   :class:`LocalParameterization` or :class:`Manifold` for the
   parameter block.

   Repeated calls will cause any previously associated
   :class:`LocalParameterization` or :class:`Manifold` object to be
   replaced with the ``local_parameterization``.

   The ``local_parameterization`` is owned by the :class:`Problem` by
   default (See :class:`Problem::Options` to override this behaviour).

   It is acceptable to set the same :class:`LocalParameterization` for
   multiple parameter blocks; the Problem destructor is careful to
   delete :class:`LocalParamaterizations` only once.

.. function:: LocalParameterization* Problem::GetParameterization(const double* values) const

   Get the local parameterization object associated with this
   parameter block. If there is no parameterization object associated
   then ``nullptr`` is returned

   .. NOTE::

       This method is deprecated and will be removed in Ceres Solver
       version 2.2.0. Please move to using the
       :func:`Problem::GetParameterization` instead.

       Note also that if a :class:`LocalParameterization` is
       associated with a parameter block, :func:`Problem::HasManifold`
       will return true and :func:`Problem::GetManifold` will return
       the :class:`LocalParameterization` wrapped in a
       ``ManifoldAdapter``.

       The converse is NOT true, i.e., if a :class:`Manifold` is
       associated with a parameter block,
       :func:`Problem::HasParameterization` will return ``false`` and
       :func:`Problem::GetParameterization` will return a
       ``nullptr``.

.. function:: bool HasParameterization(const double* values) const;

   Returns ``true`` if a :class:`LocalParameterization` is associated
   with this parameter block, ``false`` otherwise.

   .. NOTE::

      This method is deprecated and will be removed in the next public
      release of Ceres Solver. Use :func:`Problem::HasManifold` instead.

      Note also that if a :class:`Manifold` is associated with the
      parameter block, this method will return ``false``.

.. function:: void SetManifold(double* values, Manifold* manifold);

   Set the :class:`Manifold` for the parameter block. Calling
   :func:`Problem::SetManifold` with ``nullptr`` will clear any
   previously set :class:`LocalParameterization` or :class:`Manifold`
   for the parameter block.

   Repeated calls will result in any previously associated
   :class:`LocalParameterization` or :class:`Manifold` object to be
   replaced with ``manifold``.

   ``manifold`` is owned by :class:`Problem` by default (See
   :class:`Problem::Options` to override this behaviour).

   It is acceptable to set the same :class:`Manifold` for multiple
   parameter blocks.

.. function:: const Manifold* GetManifold(const double* values) const;

   Get the :class:`Manifold` object associated with this parameter block.

   If there is no :class:`Manifold` or :class:`LocalParameterization`
   object associated then ``nullptr`` is returned.

   .. NOTE::

      During the transition from :class:`LocalParameterization` to
      :class:`Manifold`, internally the :class:`LocalParameterization` is
      treated as a :class:`Manifold` by wrapping it using a ``ManifoldAdapter``
      object. So calling :func:`Problem::GetManifold` on a parameter block with a
      :class:`LocalParameterization` associated with it will return the
      :class:`LocalParameterization` wrapped in a ManifoldAdapter.

.. function:: bool HasManifold(const double* values) const;

   Returns ``true`` if a :class:`Manifold` or a
   :class:`LocalParameterization` is associated with this parameter
   block, ``false`` otherwise.

.. function:: void Problem::SetParameterLowerBound(double* values, int index, double lower_bound)

   Set the lower bound for the parameter at position `index` in the
   parameter block corresponding to `values`. By default the lower
   bound is ``-std::numeric_limits<double>::max()``, which is treated
   by the solver as the same as :math:`-\infty`.

.. function:: void Problem::SetParameterUpperBound(double* values, int index, double upper_bound)

   Set the upper bound for the parameter at position `index` in the
   parameter block corresponding to `values`. By default the value is
   ``std::numeric_limits<double>::max()``, which is treated by the
   solver as the same as :math:`\infty`.

.. function:: double Problem::GetParameterLowerBound(const double* values, int index)

   Get the lower bound for the parameter with position `index`. If the
   parameter is not bounded by the user, then its lower bound is
   ``-std::numeric_limits<double>::max()``.

.. function:: double Problem::GetParameterUpperBound(const double* values, int index)

   Get the upper bound for the parameter with position `index`. If the
   parameter is not bounded by the user, then its upper bound is
   ``std::numeric_limits<double>::max()``.

.. function:: int Problem::NumParameterBlocks() const

   Number of parameter blocks in the problem. Always equals
   parameter_blocks().size() and parameter_block_sizes().size().

.. function:: int Problem::NumParameters() const

   The size of the parameter vector obtained by summing over the sizes
   of all the parameter blocks.

.. function:: int Problem::NumResidualBlocks() const

   Number of residual blocks in the problem. Always equals
   residual_blocks().size().

.. function:: int Problem::NumResiduals() const

   The size of the residual vector obtained by summing over the sizes
   of all of the residual blocks.

.. function:: int Problem::ParameterBlockSize(const double* values) const

   The size of the parameter block.

.. function:: int Problem::ParameterBlockLocalSize(const double* values) const

   The dimension of the tangent space of the
   :class:`LocalParameterization` or :class:`Manifold` for the
   parameter block. If there is no :class:`LocalParameterization` or
   :class:`Manifold` associated with this parameter block, then
   ``ParameterBlockLocalSize = ParameterBlockSize``.

   .. NOTE::

      This method is deprecated and will be removed in Ceres Solver
      Version 2.2.0. Use :func:`Problem::ParameterBlockTangentSize`
      instead.

.. function:: int Problem::ParameterBlockTangentSize(const double* values) const

   The dimension of the tangent space of the
   :class:`LocalParameterization` or :class:`Manifold` for the
   parameter block. If there is no :class:`LocalParameterization` or
   :class:`Manifold` associated with this parameter block, then
   ``ParameterBlockLocalSize = ParameterBlockSize``.

.. function:: bool Problem::HasParameterBlock(const double* values) const

   Is the given parameter block present in the problem or not?

.. function:: void Problem::GetParameterBlocks(vector<double*>* parameter_blocks) const

   Fills the passed ``parameter_blocks`` vector with pointers to the
   parameter blocks currently in the problem. After this call,
   ``parameter_block.size() == NumParameterBlocks``.

.. function:: void Problem::GetResidualBlocks(vector<ResidualBlockId>* residual_blocks) const

   Fills the passed `residual_blocks` vector with pointers to the
   residual blocks currently in the problem. After this call,
   `residual_blocks.size() == NumResidualBlocks`.

.. function:: void Problem::GetParameterBlocksForResidualBlock(const ResidualBlockId residual_block, vector<double*>* parameter_blocks) const

   Get all the parameter blocks that depend on the given residual
   block.

.. function:: void Problem::GetResidualBlocksForParameterBlock(const double* values, vector<ResidualBlockId>* residual_blocks) const

   Get all the residual blocks that depend on the given parameter
   block.

   If :member:`Problem::Options::enable_fast_removal` is
   ``true``, then getting the residual blocks is fast and depends only
   on the number of residual blocks. Otherwise, getting the residual
   blocks for a parameter block will scan the entire problem.

.. function:: const CostFunction* Problem::GetCostFunctionForResidualBlock(const ResidualBlockId residual_block) const

   Get the :class:`CostFunction` for the given residual block.

.. function:: const LossFunction* Problem::GetLossFunctionForResidualBlock(const ResidualBlockId residual_block) const

   Get the :class:`LossFunction` for the given residual block.

.. function::  bool EvaluateResidualBlock(ResidualBlockId residual_block_id, bool apply_loss_function, double* cost,double* residuals, double** jacobians) const

   Evaluates the residual block, storing the scalar cost in ``cost``, the
   residual components in ``residuals``, and the jacobians between the
   parameters and residuals in ``jacobians[i]``, in row-major order.

   If ``residuals`` is ``nullptr``, the residuals are not computed.

   If ``jacobians`` is ``nullptr``, no Jacobians are computed. If
   ``jacobians[i]`` is ``nullptr``, then the Jacobian for that
   parameter block is not computed.

   It is not okay to request the Jacobian w.r.t a parameter block
   that is constant.

   The return value indicates the success or failure. Even if the
   function returns false, the caller should expect the output
   memory locations to have been modified.

   The returned cost and jacobians have had robustification and
   :class:`LocalParameterization`/:class:`Manifold` applied already;
   for example, the jacobian for a 4-dimensional quaternion parameter
   using the :class:`QuaternionManifold` is ``num_residuals x 3``
   instead of ``num_residuals x 4``.

   ``apply_loss_function`` as the name implies allows the user to
   switch the application of the loss function on and off.

   .. NOTE:: If an :class:`EvaluationCallback` is associated with the
      problem, then its
      :func:`EvaluationCallback::PrepareForEvaluation` method will be
      called every time this method is called with `new_point =
      true`. This conservatively assumes that the user may have
      changed the parameter values since the previous call to evaluate
      / solve.  For improved efficiency, and only if you know that the
      parameter values have not changed between calls, see
      :func:`Problem::EvaluateResidualBlockAssumingParametersUnchanged`.


.. function::  bool EvaluateResidualBlockAssumingParametersUnchanged(ResidualBlockId residual_block_id, bool apply_loss_function, double* cost,double* residuals, double** jacobians) const

    Same as :func:`Problem::EvaluateResidualBlock` except that if an
    :class:`EvaluationCallback` is associated with the problem, then
    its :func:`EvaluationCallback::PrepareForEvaluation` method will
    be called every time this method is called with new_point = false.

    This means, if an :class:`EvaluationCallback` is associated with
    the problem then it is the user's responsibility to call
    :func:`EvaluationCallback::PrepareForEvaluation` before calling
    this method if necessary, i.e. iff the parameter values have been
    changed since the last call to evaluate / solve.'

    This is because, as the name implies, we assume that the parameter
    blocks did not change since the last time
    :func:`EvaluationCallback::PrepareForEvaluation` was called (via
    :func:`Solve`, :func:`Problem::Evaluate` or
    :func:`Problem::EvaluateResidualBlock`).


.. function:: bool Problem::Evaluate(const Problem::EvaluateOptions& options, double* cost, vector<double>* residuals, vector<double>* gradient, CRSMatrix* jacobian)

   Evaluate a :class:`Problem`. Any of the output pointers can be
   ``nullptr``. Which residual blocks and parameter blocks are used is
   controlled by the :class:`Problem::EvaluateOptions` struct below.

   .. NOTE::

      The evaluation will use the values stored in the memory
      locations pointed to by the parameter block pointers used at the
      time of the construction of the problem, for example in the
      following code:

      .. code-block:: c++

        Problem problem;
        double x = 1;
        problem.Add(new MyCostFunction, nullptr, &x);

        double cost = 0.0;
        problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr);

      The cost is evaluated at `x = 1`. If you wish to evaluate the
      problem at `x = 2`, then

      .. code-block:: c++

         x = 2;
         problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr);

      is the way to do so.

   .. NOTE::

      If no :class:`LocalParameterization`/:class:`Manifold` are used,
      then the size of the gradient vector is the sum of the sizes of
      all the parameter blocks. If a parameter block has a local
      parameterization, then it contributes "LocalSize" entries to the
      gradient vector.

   .. NOTE::

      This function cannot be called while the problem is being
      solved, for example it cannot be called from an
      :class:`IterationCallback` at the end of an iteration during a
      solve.

   .. NOTE::

      If an EvaluationCallback is associated with the problem, then
      its PrepareForEvaluation method will be called everytime this
      method is called with ``new_point = true``.

.. class:: Problem::EvaluateOptions

   Options struct that is used to control :func:`Problem::Evaluate`.

.. member:: vector<double*> Problem::EvaluateOptions::parameter_blocks

   The set of parameter blocks for which evaluation should be
   performed. This vector determines the order in which parameter
   blocks occur in the gradient vector and in the columns of the
   jacobian matrix. If parameter_blocks is empty, then it is assumed
   to be equal to a vector containing ALL the parameter
   blocks. Generally speaking the ordering of the parameter blocks in
   this case depends on the order in which they were added to the
   problem and whether or not the user removed any parameter blocks.

   **NOTE** This vector should contain the same pointers as the ones
   used to add parameter blocks to the Problem. These parameter block
   should NOT point to new memory locations. Bad things will happen if
   you do.

.. member:: vector<ResidualBlockId> Problem::EvaluateOptions::residual_blocks

   The set of residual blocks for which evaluation should be
   performed. This vector determines the order in which the residuals
   occur, and how the rows of the jacobian are ordered. If
   residual_blocks is empty, then it is assumed to be equal to the
   vector containing all the residual blocks.

.. member:: bool Problem::EvaluateOptions::apply_loss_function

   Even though the residual blocks in the problem may contain loss
   functions, setting apply_loss_function to false will turn off the
   application of the loss function to the output of the cost
   function. This is of use for example if the user wishes to analyse
   the solution quality by studying the distribution of residuals
   before and after the solve.

.. member:: int Problem::EvaluateOptions::num_threads

   Number of threads to use.


:class:`EvaluationCallback`
===========================

.. class:: EvaluationCallback

   Interface for receiving callbacks before Ceres evaluates residuals or
   Jacobians:

   .. code-block:: c++

      class EvaluationCallback {
       public:
        virtual ~EvaluationCallback() = default;
        virtual void PrepareForEvaluation()(bool evaluate_jacobians
                                            bool new_evaluation_point) = 0;
      };

.. function:: void EvaluationCallback::PrepareForEvaluation(bool evaluate_jacobians, bool new_evaluation_point)

   Ceres will call :func:`EvaluationCallback::PrepareForEvaluation`
   every time, and once before it computes the residuals and/or the
   Jacobians.

   User parameters (the double* values provided by the user) are fixed
   until the next call to
   :func:`EvaluationCallback::PrepareForEvaluation`. If
   ``new_evaluation_point == true``, then this is a new point that is
   different from the last evaluated point. Otherwise, it is the same
   point that was evaluated previously (either Jacobian or residual)
   and the user can use cached results from previous evaluations. If
   ``evaluate_jacobians`` is ``true``, then Ceres will request Jacobians
   in the upcoming cost evaluation.

   Using this callback interface, Ceres can notify you when it is
   about to evaluate the residuals or Jacobians. With the callback,
   you can share computation between residual blocks by doing the
   shared computation in
   :func:`EvaluationCallback::PrepareForEvaluation` before Ceres calls
   :func:`CostFunction::Evaluate` on all the residuals. It also
   enables caching results between a pure residual evaluation and a
   residual & Jacobian evaluation, via the ``new_evaluation_point``
   argument.

   One use case for this callback is if the cost function compute is
   moved to the GPU. In that case, the prepare call does the actual
   cost function evaluation, and subsequent calls from Ceres to the
   actual cost functions merely copy the results from the GPU onto the
   corresponding blocks for Ceres to plug into the solver.

   **Note**: Ceres provides no mechanism to share data other than the
   notification from the callback. Users must provide access to
   pre-computed shared data to their cost functions behind the scenes;
   this all happens without Ceres knowing. One approach is to put a
   pointer to the shared data in each cost function (recommended) or
   to use a global shared variable (discouraged; bug-prone).  As far
   as Ceres is concerned, it is evaluating cost functions like any
   other; it just so happens that behind the scenes the cost functions
   reuse pre-computed data to execute faster.

   See ``evaluation_callback_test.cc`` for code that explicitly
   verifies the preconditions between
   :func:`EvaluationCallback::PrepareForEvaluation` and
   :func:`CostFunction::Evaluate`.


``rotation.h``
==============

Many applications of Ceres Solver involve optimization problems where
some of the variables correspond to rotations. To ease the pain of
work with the various representations of rotations (angle-axis,
quaternion and matrix) we provide a handy set of templated
functions. These functions are templated so that the user can use them
within Ceres Solver's automatic differentiation framework.

.. function:: template <typename T> void AngleAxisToQuaternion(T const* angle_axis, T* quaternion)

   Convert a value in combined axis-angle representation to a
   quaternion.

   The value ``angle_axis`` is a triple whose norm is an angle in radians,
   and whose direction is aligned with the axis of rotation, and
   ``quaternion`` is a 4-tuple that will contain the resulting quaternion.

.. function::  template <typename T> void QuaternionToAngleAxis(T const* quaternion, T* angle_axis)

   Convert a quaternion to the equivalent combined axis-angle
   representation.

   The value ``quaternion`` must be a unit quaternion - it is not
   normalized first, and ``angle_axis`` will be filled with a value
   whose norm is the angle of rotation in radians, and whose direction
   is the axis of rotation.

.. function:: template <typename T, int row_stride, int col_stride> void RotationMatrixToAngleAxis(const MatrixAdapter<const T, row_stride, col_stride>& R, T * angle_axis)
.. function:: template <typename T, int row_stride, int col_stride> void AngleAxisToRotationMatrix(T const * angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R)
.. function:: template <typename T> void RotationMatrixToAngleAxis(T const * R, T * angle_axis)
.. function:: template <typename T> void AngleAxisToRotationMatrix(T const * angle_axis, T * R)

   Conversions between :math:`3\times3` rotation matrix with given column and row strides and
   axis-angle rotation representations. The functions that take a pointer to T instead
   of a MatrixAdapter assume a column major representation with unit row stride and a column stride of 3.

.. function:: template <typename T, int row_stride, int col_stride> void EulerAnglesToRotationMatrix(const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R)
.. function:: template <typename T> void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R)

   Conversions between :math:`3\times3` rotation matrix with given column and row strides and
   Euler angle (in degrees) rotation representations.

   The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
   axes, respectively.  They are applied in that same order, so the
   total rotation R is Rz * Ry * Rx.

   The function that takes a pointer to T as the rotation matrix assumes a row
   major representation with unit column stride and a row stride of 3.
   The additional parameter row_stride is required to be 3.

.. function:: template <typename T, int row_stride, int col_stride> void QuaternionToScaledRotation(const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R)
.. function:: template <typename T> void QuaternionToScaledRotation(const T q[4], T R[3 * 3])

   Convert a 4-vector to a :math:`3\times3` scaled rotation matrix.

   The choice of rotation is such that the quaternion
   :math:`\begin{bmatrix} 1 &0 &0 &0\end{bmatrix}` goes to an identity
   matrix and for small :math:`a, b, c` the quaternion
   :math:`\begin{bmatrix}1 &a &b &c\end{bmatrix}` goes to the matrix

   .. math::

     I + 2 \begin{bmatrix} 0 & -c & b \\ c & 0 & -a\\ -b & a & 0
           \end{bmatrix} + O(q^2)

   which corresponds to a Rodrigues approximation, the last matrix
   being the cross-product matrix of :math:`\begin{bmatrix} a& b&
   c\end{bmatrix}`. Together with the property that :math:`R(q_1 \otimes q_2)
   = R(q_1) R(q_2)` this uniquely defines the mapping from :math:`q` to
   :math:`R`.

   In the function that accepts a pointer to T instead of a MatrixAdapter,
   the rotation matrix ``R`` is a row-major matrix with unit column stride
   and a row stride of 3.

   No normalization of the quaternion is performed, i.e.
   :math:`R = \|q\|^2  Q`, where :math:`Q` is an orthonormal matrix
   such that :math:`\det(Q) = 1` and :math:`QQ' = I`.


.. function:: template <typename T> void QuaternionToRotation(const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R)
.. function:: template <typename T> void QuaternionToRotation(const T q[4], T R[3 * 3])

   Same as above except that the rotation matrix is normalized by the
   Frobenius norm, so that :math:`R R' = I` (and :math:`\det(R) = 1`).

.. function:: template <typename T> void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3])

   Rotates a point pt by a quaternion q:

   .. math:: \text{result} = R(q)  \text{pt}

   Assumes the quaternion is unit norm. If you pass in a quaternion
   with :math:`|q|^2 = 2` then you WILL NOT get back 2 times the
   result you get for a unit quaternion.


.. function:: template <typename T> void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3])

   With this function you do not need to assume that :math:`q` has unit norm.
   It does assume that the norm is non-zero.

.. function:: template <typename T> void QuaternionProduct(const T z[4], const T w[4], T zw[4])

   .. math:: zw = z \otimes w

   where :math:`\otimes` is the Quaternion product between 4-vectors.


.. function:: template <typename T> void CrossProduct(const T x[3], const T y[3], T x_cross_y[3])

   .. math:: \text{x_cross_y} = x \times y

.. function:: template <typename T> void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3])

   .. math:: y = R(\text{angle_axis}) x


Cubic Interpolation
===================

Optimization problems often involve functions that are given in the
form of a table of values, for example an image. Evaluating these
functions and their derivatives requires interpolating these
values. Interpolating tabulated functions is a vast area of research
and there are a lot of libraries which implement a variety of
interpolation schemes. However, using them within the automatic
differentiation framework in Ceres is quite painful. To this end,
Ceres provides the ability to interpolate one dimensional and two
dimensional tabular functions.

The one dimensional interpolation is based on the Cubic Hermite
Spline, also known as the Catmull-Rom Spline. This produces a first
order differentiable interpolating function. The two dimensional
interpolation scheme is a generalization of the one dimensional scheme
where the interpolating function is assumed to be separable in the two
dimensions,

More details of the construction can be found `Linear Methods for
Image Interpolation <http://www.ipol.im/pub/art/2011/g_lmii/>`_ by
Pascal Getreuer.

.. class:: CubicInterpolator

Given as input an infinite one dimensional grid, which provides the
following interface.

.. code::

  struct Grid1D {
    enum { DATA_DIMENSION = 2; };
    void GetValue(int n, double* f) const;
  };

Where, ``GetValue`` gives us the value of a function :math:`f`
(possibly vector valued) for any integer :math:`n` and the enum
``DATA_DIMENSION`` indicates the dimensionality of the function being
interpolated. For example if you are interpolating rotations in
axis-angle format over time, then ``DATA_DIMENSION = 3``.

:class:`CubicInterpolator` uses Cubic Hermite splines to produce a
smooth approximation to it that can be used to evaluate the
:math:`f(x)` and :math:`f'(x)` at any point on the real number
line. For example, the following code interpolates an array of four
numbers.

.. code::

  const double x[] = {1.0, 2.0, 5.0, 6.0};
  Grid1D<double, 1> array(x, 0, 4);
  CubicInterpolator interpolator(array);
  double f, dfdx;
  interpolator.Evaluate(1.5, &f, &dfdx);


In the above code we use ``Grid1D`` a templated helper class that
allows easy interfacing between ``C++`` arrays and
:class:`CubicInterpolator`.

``Grid1D`` supports vector valued functions where the various
coordinates of the function can be interleaved or stacked. It also
allows the use of any numeric type as input, as long as it can be
safely cast to a double.

.. class:: BiCubicInterpolator

Given as input an infinite two dimensional grid, which provides the
following interface:

.. code::

  struct Grid2D {
    enum { DATA_DIMENSION = 2 };
    void GetValue(int row, int col, double* f) const;
  };

Where, ``GetValue`` gives us the value of a function :math:`f`
(possibly vector valued) for any pair of integers :code:`row` and
:code:`col` and the enum ``DATA_DIMENSION`` indicates the
dimensionality of the function being interpolated. For example if you
are interpolating a color image with three channels (Red, Green &
Blue), then ``DATA_DIMENSION = 3``.

:class:`BiCubicInterpolator` uses the cubic convolution interpolation
algorithm of R. Keys [Keys]_, to produce a smooth approximation to it
that can be used to evaluate the :math:`f(r,c)`, :math:`\frac{\partial
f(r,c)}{\partial r}` and :math:`\frac{\partial f(r,c)}{\partial c}` at
any any point in the real plane.

For example the following code interpolates a two dimensional array.

.. code::

   const double data[] = {1.0, 3.0, -1.0, 4.0,
                          3.6, 2.1,  4.2, 2.0,
                          2.0, 1.0,  3.1, 5.2};
   Grid2D<double, 1>  array(data, 0, 3, 0, 4);
   BiCubicInterpolator interpolator(array);
   double f, dfdr, dfdc;
   interpolator.Evaluate(1.2, 2.5, &f, &dfdr, &dfdc);

In the above code, the templated helper class ``Grid2D`` is used to
make a ``C++`` array look like a two dimensional table to
:class:`BiCubicInterpolator`.

``Grid2D`` supports row or column major layouts. It also supports
vector valued functions where the individual coordinates of the
function may be interleaved or stacked. It also allows the use of any
numeric type as input, as long as it can be safely cast to double.