1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2018 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: alexs.mac@gmail.com (Alex Stewart)
#ifndef CERES_INTERNAL_ACCELERATE_SPARSE_H_
#define CERES_INTERNAL_ACCELERATE_SPARSE_H_
// This include must come before any #ifndef check on Ceres compile options.
#include "ceres/internal/config.h"
#ifndef CERES_NO_ACCELERATE_SPARSE
#include <memory>
#include <string>
#include <vector>
#include "Accelerate.h"
#include "ceres/linear_solver.h"
#include "ceres/sparse_cholesky.h"
namespace ceres {
namespace internal {
class CompressedRowSparseMatrix;
class TripletSparseMatrix;
template <typename Scalar>
struct SparseTypesTrait {};
template <>
struct SparseTypesTrait<double> {
typedef DenseVector_Double DenseVector;
typedef SparseMatrix_Double SparseMatrix;
typedef SparseOpaqueSymbolicFactorization SymbolicFactorization;
typedef SparseOpaqueFactorization_Double NumericFactorization;
};
template <>
struct SparseTypesTrait<float> {
typedef DenseVector_Float DenseVector;
typedef SparseMatrix_Float SparseMatrix;
typedef SparseOpaqueSymbolicFactorization SymbolicFactorization;
typedef SparseOpaqueFactorization_Float NumericFactorization;
};
template <typename Scalar>
class AccelerateSparse {
public:
using DenseVector = typename SparseTypesTrait<Scalar>::DenseVector;
// Use ASSparseMatrix to avoid collision with ceres::internal::SparseMatrix.
using ASSparseMatrix = typename SparseTypesTrait<Scalar>::SparseMatrix;
using SymbolicFactorization =
typename SparseTypesTrait<Scalar>::SymbolicFactorization;
using NumericFactorization =
typename SparseTypesTrait<Scalar>::NumericFactorization;
// Solves a linear system given its symbolic (reference counted within
// NumericFactorization) and numeric factorization.
void Solve(NumericFactorization* numeric_factor,
DenseVector* rhs_and_solution);
// Note: Accelerate's API passes/returns its objects by value, but as the
// objects contain pointers to the underlying data these copies are
// all shallow (in some cases Accelerate also reference counts the
// objects internally).
ASSparseMatrix CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
// Computes a symbolic factorisation of A that can be used in Solve().
SymbolicFactorization AnalyzeCholesky(ASSparseMatrix* A);
// Compute the numeric Cholesky factorization of A, given its
// symbolic factorization.
NumericFactorization Cholesky(ASSparseMatrix* A,
SymbolicFactorization* symbolic_factor);
// Reuse the NumericFactorization from a previous matrix with the same
// symbolic factorization to represent a new numeric factorization.
void Cholesky(ASSparseMatrix* A, NumericFactorization* numeric_factor);
private:
std::vector<long> column_starts_;
std::vector<uint8_t> solve_workspace_;
std::vector<uint8_t> factorization_workspace_;
// Storage for the values of A if Scalar != double (necessitating a copy).
Eigen::Matrix<Scalar, Eigen::Dynamic, 1> values_;
};
// An implementation of SparseCholesky interface using Apple's Accelerate
// framework.
template <typename Scalar>
class AppleAccelerateCholesky final : public SparseCholesky {
public:
// Factory
static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type);
// SparseCholesky interface.
virtual ~AppleAccelerateCholesky();
CompressedRowSparseMatrix::StorageType StorageType() const;
LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
std::string* message) final;
LinearSolverTerminationType Solve(const double* rhs,
double* solution,
std::string* message) final;
private:
AppleAccelerateCholesky(const OrderingType ordering_type);
void FreeSymbolicFactorization();
void FreeNumericFactorization();
const OrderingType ordering_type_;
AccelerateSparse<Scalar> as_;
std::unique_ptr<typename AccelerateSparse<Scalar>::SymbolicFactorization>
symbolic_factor_;
std::unique_ptr<typename AccelerateSparse<Scalar>::NumericFactorization>
numeric_factor_;
// Copy of rhs/solution if Scalar != double (necessitating a copy).
Eigen::Matrix<Scalar, Eigen::Dynamic, 1> scalar_rhs_and_solution_;
};
} // namespace internal
} // namespace ceres
#endif // CERES_NO_ACCELERATE_SPARSE
#endif // CERES_INTERNAL_ACCELERATE_SPARSE_H_
|