File: photometric_error.h

package info (click to toggle)
ceres-solver 2.1.0%2Breally2.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,656 kB
  • sloc: cpp: 80,895; ansic: 2,869; python: 679; sh: 78; makefile: 74; xml: 21
file content (191 lines) | stat: -rw-r--r-- 8,107 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2020 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: nikolaus@nikolaus-demmel.de (Nikolaus Demmel)
//
//
#ifndef CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_
#define CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_

#include <Eigen/Dense>

#include "ceres/cubic_interpolation.h"

namespace ceres {

// Photometric residual that computes the intensity difference for a patch
// between host and target frame. The point is parameterized with inverse
// distance relative to the host frame. The relative pose between host and
// target frame is computed from their respective absolute poses.
//
// The residual is similar to the one defined by Engel et al. [1]. Differences
// include:
//
// 1. Use of a camera model based on spherical projection, namely the enhanced
// unified camera model [2][3]. This is intended to bring some variability to
// the benchmark compared to the SnavelyReprojection that uses a
// polynomial-based distortion model.
//
// 2. To match the camera model, inverse distance parameterization is used for
// points instead of inverse depth [4].
//
// 3. For simplicity, camera intrinsics are assumed constant, and thus host
// frame points are passed as (unprojected) bearing vectors, which avoids the
// need for an 'unproject' function.
//
// 4. Some details of the residual in [1] are omitted for simplicity: The
// brightness transform parameters [a,b], the constant pre-weight w, and the
// per-pixel robust norm.
//
// [1] J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," in IEEE
// Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3,
// pp. 611-625, 1 March 2018.
//
// [2] B. Khomutenko, G. Garcia and P. Martinet, "An Enhanced Unified Camera
// Model," in IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 137-144,
// Jan. 2016.
//
// [3] V. Usenko, N. Demmel and D. Cremers, "The Double Sphere Camera Model,"
// 2018 International Conference on 3D Vision (3DV), Verona, 2018, pp. 552-560.
//
// [4] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler and D. Cremers,
// "Omnidirectional DSO: Direct Sparse Odometry With Fisheye Cameras," in IEEE
// Robotics and Automation Letters, vol. 3, no. 4, pp. 3693-3700, Oct. 2018.
template <int PATCH_SIZE_ = 8>
struct PhotometricError {
  static constexpr int PATCH_SIZE = PATCH_SIZE_;
  static constexpr int POSE_SIZE = 7;
  static constexpr int POINT_SIZE = 1;

  using Grid = Grid2D<uint8_t, 1>;
  using Interpolator = BiCubicInterpolator<Grid>;
  using Intrinsics = Eigen::Array<double, 6, 1>;

  template <typename T>
  using Patch = Eigen::Array<T, PATCH_SIZE, 1>;

  template <typename T>
  using PatchVectors = Eigen::Matrix<T, 3, PATCH_SIZE>;

  PhotometricError(const Patch<double>& intensities_host,
                   const PatchVectors<double>& bearings_host,
                   const Interpolator& image_target,
                   const Intrinsics& intrinsics)
      : intensities_host_(intensities_host),
        bearings_host_(bearings_host),
        image_target_(image_target),
        intrinsics_(intrinsics) {}

  template <typename T>
  inline bool Project(Eigen::Matrix<T, 2, 1>& proj,
                      const Eigen::Matrix<T, 3, 1>& p) const {
    const double& fx = intrinsics_[0];
    const double& fy = intrinsics_[1];
    const double& cx = intrinsics_[2];
    const double& cy = intrinsics_[3];
    const double& alpha = intrinsics_[4];
    const double& beta = intrinsics_[5];

    const T rho2 = beta * (p.x() * p.x() + p.y() * p.y()) + p.z() * p.z();
    const T rho = sqrt(rho2);

    // Check if 3D point is in domain of projection function.
    // See (8) and (17) in [3].
    constexpr double NUMERIC_EPSILON = 1e-10;
    const double w =
        alpha > 0.5 ? (1.0 - alpha) / alpha : alpha / (1.0 - alpha);
    if (p.z() <= -w * rho + NUMERIC_EPSILON) {
      return false;
    }

    const T norm = alpha * rho + (1.0 - alpha) * p.z();
    const T norm_inv = 1.0 / norm;

    const T mx = p.x() * norm_inv;
    const T my = p.y() * norm_inv;

    proj[0] = fx * mx + cx;
    proj[1] = fy * my + cy;

    return true;
  }

  template <typename T>
  inline bool operator()(const T* const pose_host_ptr,
                         const T* const pose_target_ptr,
                         const T* const idist_ptr,
                         T* residuals_ptr) const {
    Eigen::Map<const Eigen::Quaternion<T>> q_w_h(pose_host_ptr);
    Eigen::Map<const Eigen::Matrix<T, 3, 1>> t_w_h(pose_host_ptr + 4);
    Eigen::Map<const Eigen::Quaternion<T>> q_w_t(pose_target_ptr);
    Eigen::Map<const Eigen::Matrix<T, 3, 1>> t_w_t(pose_target_ptr + 4);
    const T& idist = *idist_ptr;
    Eigen::Map<Patch<T>> residuals(residuals_ptr);

    // Compute relative pose from host to target frame.
    const Eigen::Quaternion<T> q_t_h = q_w_t.conjugate() * q_w_h;
    const Eigen::Matrix<T, 3, 3> R_t_h = q_t_h.toRotationMatrix();
    const Eigen::Matrix<T, 3, 1> t_t_h = q_w_t.conjugate() * (t_w_h - t_w_t);

    // Transform points from host to target frame. 3D point in target frame is
    // scaled by idist for numerical stability when idist is close to 0
    // (projection is invariant to scaling).
    PatchVectors<T> p_target_scaled =
        (R_t_h * bearings_host_).colwise() + idist * t_t_h;

    // Project points and interpolate image.
    Patch<T> intensities_target;
    for (int i = 0; i < p_target_scaled.cols(); ++i) {
      Eigen::Matrix<T, 2, 1> uv;
      if (!Project(uv, Eigen::Matrix<T, 3, 1>(p_target_scaled.col(i)))) {
        // If any point of the patch is outside the domain of the projection
        // function, the residual cannot be evaluated. For the benchmark we want
        // to avoid this case and thus throw an exception to indicate
        // immediately if it does actually happen after possible future changes.
        throw std::runtime_error("Benchmark data leads to invalid projection.");
      }

      // Mind the order of u and v: Evaluate takes (row, column), but u is
      // left-to-right and v top-to-bottom image axis.
      image_target_.Evaluate(uv[1], uv[0], &intensities_target[i]);
    }

    // Residual is intensity difference between host and target frame.
    residuals = intensities_target - intensities_host_;

    return true;
  }

 private:
  const Patch<double>& intensities_host_;
  const PatchVectors<double>& bearings_host_;
  const Interpolator& image_target_;
  const Intrinsics& intrinsics_;
};
}  // namespace ceres
#endif  // CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_