1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2020 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: nikolaus@nikolaus-demmel.de (Nikolaus Demmel)
//
//
#ifndef CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_
#define CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_
#include <Eigen/Dense>
#include "ceres/cubic_interpolation.h"
namespace ceres {
// Photometric residual that computes the intensity difference for a patch
// between host and target frame. The point is parameterized with inverse
// distance relative to the host frame. The relative pose between host and
// target frame is computed from their respective absolute poses.
//
// The residual is similar to the one defined by Engel et al. [1]. Differences
// include:
//
// 1. Use of a camera model based on spherical projection, namely the enhanced
// unified camera model [2][3]. This is intended to bring some variability to
// the benchmark compared to the SnavelyReprojection that uses a
// polynomial-based distortion model.
//
// 2. To match the camera model, inverse distance parameterization is used for
// points instead of inverse depth [4].
//
// 3. For simplicity, camera intrinsics are assumed constant, and thus host
// frame points are passed as (unprojected) bearing vectors, which avoids the
// need for an 'unproject' function.
//
// 4. Some details of the residual in [1] are omitted for simplicity: The
// brightness transform parameters [a,b], the constant pre-weight w, and the
// per-pixel robust norm.
//
// [1] J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," in IEEE
// Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3,
// pp. 611-625, 1 March 2018.
//
// [2] B. Khomutenko, G. Garcia and P. Martinet, "An Enhanced Unified Camera
// Model," in IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 137-144,
// Jan. 2016.
//
// [3] V. Usenko, N. Demmel and D. Cremers, "The Double Sphere Camera Model,"
// 2018 International Conference on 3D Vision (3DV), Verona, 2018, pp. 552-560.
//
// [4] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler and D. Cremers,
// "Omnidirectional DSO: Direct Sparse Odometry With Fisheye Cameras," in IEEE
// Robotics and Automation Letters, vol. 3, no. 4, pp. 3693-3700, Oct. 2018.
template <int PATCH_SIZE_ = 8>
struct PhotometricError {
static constexpr int PATCH_SIZE = PATCH_SIZE_;
static constexpr int POSE_SIZE = 7;
static constexpr int POINT_SIZE = 1;
using Grid = Grid2D<uint8_t, 1>;
using Interpolator = BiCubicInterpolator<Grid>;
using Intrinsics = Eigen::Array<double, 6, 1>;
template <typename T>
using Patch = Eigen::Array<T, PATCH_SIZE, 1>;
template <typename T>
using PatchVectors = Eigen::Matrix<T, 3, PATCH_SIZE>;
PhotometricError(const Patch<double>& intensities_host,
const PatchVectors<double>& bearings_host,
const Interpolator& image_target,
const Intrinsics& intrinsics)
: intensities_host_(intensities_host),
bearings_host_(bearings_host),
image_target_(image_target),
intrinsics_(intrinsics) {}
template <typename T>
inline bool Project(Eigen::Matrix<T, 2, 1>& proj,
const Eigen::Matrix<T, 3, 1>& p) const {
const double& fx = intrinsics_[0];
const double& fy = intrinsics_[1];
const double& cx = intrinsics_[2];
const double& cy = intrinsics_[3];
const double& alpha = intrinsics_[4];
const double& beta = intrinsics_[5];
const T rho2 = beta * (p.x() * p.x() + p.y() * p.y()) + p.z() * p.z();
const T rho = sqrt(rho2);
// Check if 3D point is in domain of projection function.
// See (8) and (17) in [3].
constexpr double NUMERIC_EPSILON = 1e-10;
const double w =
alpha > 0.5 ? (1.0 - alpha) / alpha : alpha / (1.0 - alpha);
if (p.z() <= -w * rho + NUMERIC_EPSILON) {
return false;
}
const T norm = alpha * rho + (1.0 - alpha) * p.z();
const T norm_inv = 1.0 / norm;
const T mx = p.x() * norm_inv;
const T my = p.y() * norm_inv;
proj[0] = fx * mx + cx;
proj[1] = fy * my + cy;
return true;
}
template <typename T>
inline bool operator()(const T* const pose_host_ptr,
const T* const pose_target_ptr,
const T* const idist_ptr,
T* residuals_ptr) const {
Eigen::Map<const Eigen::Quaternion<T>> q_w_h(pose_host_ptr);
Eigen::Map<const Eigen::Matrix<T, 3, 1>> t_w_h(pose_host_ptr + 4);
Eigen::Map<const Eigen::Quaternion<T>> q_w_t(pose_target_ptr);
Eigen::Map<const Eigen::Matrix<T, 3, 1>> t_w_t(pose_target_ptr + 4);
const T& idist = *idist_ptr;
Eigen::Map<Patch<T>> residuals(residuals_ptr);
// Compute relative pose from host to target frame.
const Eigen::Quaternion<T> q_t_h = q_w_t.conjugate() * q_w_h;
const Eigen::Matrix<T, 3, 3> R_t_h = q_t_h.toRotationMatrix();
const Eigen::Matrix<T, 3, 1> t_t_h = q_w_t.conjugate() * (t_w_h - t_w_t);
// Transform points from host to target frame. 3D point in target frame is
// scaled by idist for numerical stability when idist is close to 0
// (projection is invariant to scaling).
PatchVectors<T> p_target_scaled =
(R_t_h * bearings_host_).colwise() + idist * t_t_h;
// Project points and interpolate image.
Patch<T> intensities_target;
for (int i = 0; i < p_target_scaled.cols(); ++i) {
Eigen::Matrix<T, 2, 1> uv;
if (!Project(uv, Eigen::Matrix<T, 3, 1>(p_target_scaled.col(i)))) {
// If any point of the patch is outside the domain of the projection
// function, the residual cannot be evaluated. For the benchmark we want
// to avoid this case and thus throw an exception to indicate
// immediately if it does actually happen after possible future changes.
throw std::runtime_error("Benchmark data leads to invalid projection.");
}
// Mind the order of u and v: Evaluate takes (row, column), but u is
// left-to-right and v top-to-bottom image axis.
image_target_.Evaluate(uv[1], uv[0], &intensities_target[i]);
}
// Residual is intensity difference between host and target frame.
residuals = intensities_target - intensities_host_;
return true;
}
private:
const Patch<double>& intensities_host_;
const PatchVectors<double>& bearings_host_;
const Interpolator& image_target_;
const Intrinsics& intrinsics_;
};
} // namespace ceres
#endif // CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_
|