File: autodiff_manifold_test.cc

package info (click to toggle)
ceres-solver 2.1.0%2Breally2.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,656 kB
  • sloc: cpp: 80,895; ansic: 2,869; python: 679; sh: 78; makefile: 74; xml: 21
file content (296 lines) | stat: -rw-r--r-- 10,593 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#include "ceres/autodiff_manifold.h"

#include <cmath>

#include "ceres/manifold.h"
#include "ceres/manifold_test_utils.h"
#include "ceres/rotation.h"
#include "gtest/gtest.h"

namespace ceres {
namespace internal {

namespace {

constexpr int kNumTrials = 1000;
constexpr double kTolerance = 1e-9;

Vector RandomQuaternion() {
  Vector x = Vector::Random(4);
  x.normalize();
  return x;
}

}  // namespace

struct EuclideanFunctor {
  template <typename T>
  bool Plus(const T* x, const T* delta, T* x_plus_delta) const {
    for (int i = 0; i < 3; ++i) {
      x_plus_delta[i] = x[i] + delta[i];
    }
    return true;
  }

  template <typename T>
  bool Minus(const T* y, const T* x, T* y_minus_x) const {
    for (int i = 0; i < 3; ++i) {
      y_minus_x[i] = y[i] - x[i];
    }
    return true;
  }
};

TEST(AutoDiffLManifoldTest, EuclideanManifold) {
  AutoDiffManifold<EuclideanFunctor, 3, 3> manifold;
  EXPECT_EQ(manifold.AmbientSize(), 3);
  EXPECT_EQ(manifold.TangentSize(), 3);

  for (int trial = 0; trial < kNumTrials; ++trial) {
    const Vector x = Vector::Random(manifold.AmbientSize());
    const Vector y = Vector::Random(manifold.AmbientSize());
    Vector delta = Vector::Random(manifold.TangentSize());
    Vector x_plus_delta = Vector::Zero(manifold.AmbientSize());

    manifold.Plus(x.data(), delta.data(), x_plus_delta.data());
    EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(),
                0.0,
                kTolerance);

    EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance);
  }
}

struct ScaledFunctor {
  explicit ScaledFunctor(const double s) : s(s) {}

  template <typename T>
  bool Plus(const T* x, const T* delta, T* x_plus_delta) const {
    for (int i = 0; i < 3; ++i) {
      x_plus_delta[i] = x[i] + s * delta[i];
    }
    return true;
  }

  template <typename T>
  bool Minus(const T* y, const T* x, T* y_minus_x) const {
    for (int i = 0; i < 3; ++i) {
      y_minus_x[i] = (y[i] - x[i]) / s;
    }
    return true;
  }

  const double s;
};

TEST(AutoDiffManifoldTest, ScaledManifold) {
  constexpr double kScale = 1.2342;
  AutoDiffManifold<ScaledFunctor, 3, 3> manifold(new ScaledFunctor(kScale));
  EXPECT_EQ(manifold.AmbientSize(), 3);
  EXPECT_EQ(manifold.TangentSize(), 3);

  for (int trial = 0; trial < kNumTrials; ++trial) {
    const Vector x = Vector::Random(manifold.AmbientSize());
    const Vector y = Vector::Random(manifold.AmbientSize());
    Vector delta = Vector::Random(manifold.TangentSize());
    Vector x_plus_delta = Vector::Zero(manifold.AmbientSize());

    manifold.Plus(x.data(), delta.data(), x_plus_delta.data());
    EXPECT_NEAR((x_plus_delta - x - delta * kScale).norm() /
                    (x + delta * kScale).norm(),
                0.0,
                kTolerance);

    EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance);
  }
}

// Templated functor that implements the Plus and Minus operations on the
// Quaternion manifold.
struct QuaternionFunctor {
  template <typename T>
  bool Plus(const T* x, const T* delta, T* x_plus_delta) const {
    const T squared_norm_delta =
        delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];

    T q_delta[4];
    if (squared_norm_delta > T(0.0)) {
      T norm_delta = sqrt(squared_norm_delta);
      const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
      q_delta[0] = cos(norm_delta);
      q_delta[1] = sin_delta_by_delta * delta[0];
      q_delta[2] = sin_delta_by_delta * delta[1];
      q_delta[3] = sin_delta_by_delta * delta[2];
    } else {
      // We do not just use q_delta = [1,0,0,0] here because that is a
      // constant and when used for automatic differentiation will
      // lead to a zero derivative. Instead we take a first order
      // approximation and evaluate it at zero.
      q_delta[0] = T(1.0);
      q_delta[1] = delta[0];
      q_delta[2] = delta[1];
      q_delta[3] = delta[2];
    }

    QuaternionProduct(q_delta, x, x_plus_delta);
    return true;
  }

  template <typename T>
  bool Minus(const T* y, const T* x, T* y_minus_x) const {
    T minus_x[4] = {x[0], -x[1], -x[2], -x[3]};
    T ambient_y_minus_x[4];
    QuaternionProduct(y, minus_x, ambient_y_minus_x);
    T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] +
                    ambient_y_minus_x[2] * ambient_y_minus_x[2] +
                    ambient_y_minus_x[3] * ambient_y_minus_x[3]);
    if (u_norm > 0.0) {
      T theta = atan2(u_norm, ambient_y_minus_x[0]);
      y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm;
      y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm;
      y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm;
    } else {
      // We do not use [0,0,0] here because even though the value part is
      // a constant, the derivative part is not.
      y_minus_x[0] = ambient_y_minus_x[1];
      y_minus_x[1] = ambient_y_minus_x[2];
      y_minus_x[2] = ambient_y_minus_x[3];
    }
    return true;
  }
};

TEST(AutoDiffManifoldTest, QuaternionPlusPiBy2) {
  AutoDiffManifold<QuaternionFunctor, 4, 3> manifold;

  Vector x = Vector::Zero(4);
  x[0] = 1.0;

  for (int i = 0; i < 3; ++i) {
    Vector delta = Vector::Zero(3);
    delta[i] = M_PI / 2;
    Vector x_plus_delta = Vector::Zero(4);
    EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data()));

    // Expect that the element corresponding to pi/2 is +/- 1. All other
    // elements should be zero.
    for (int j = 0; j < 4; ++j) {
      if (i == (j - 1)) {
        EXPECT_LT(std::abs(x_plus_delta[j]) - 1,
                  std::numeric_limits<double>::epsilon())
            << "\ndelta = " << delta.transpose()
            << "\nx_plus_delta = " << x_plus_delta.transpose()
            << "\n expected the " << j
            << "th element of x_plus_delta to be +/- 1.";
      } else {
        EXPECT_LT(std::abs(x_plus_delta[j]),
                  std::numeric_limits<double>::epsilon())
            << "\ndelta = " << delta.transpose()
            << "\nx_plus_delta = " << x_plus_delta.transpose()
            << "\n expected the " << j << "th element of x_plus_delta to be 0.";
      }
    }
    EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(
        manifold, x, delta, x_plus_delta, kTolerance);
  }
}

// Compute the expected value of Quaternion::Plus via functions in rotation.h
// and compares it to the one computed by Quaternion::Plus.
MATCHER_P2(QuaternionPlusIsCorrectAt, x, delta, "") {
  // This multiplication by 2 is needed because AngleAxisToQuaternion uses
  // |delta|/2 as the angle of rotation where as in the implementation of
  // Quaternion for historical reasons we use |delta|.
  const Vector two_delta = delta * 2;
  Vector delta_q(4);
  AngleAxisToQuaternion(two_delta.data(), delta_q.data());

  Vector expected(4);
  QuaternionProduct(delta_q.data(), x.data(), expected.data());
  Vector actual(4);
  EXPECT_TRUE(arg.Plus(x.data(), delta.data(), actual.data()));

  const double n = (actual - expected).norm();
  const double d = expected.norm();
  const double diffnorm = n / d;
  if (diffnorm > kTolerance) {
    *result_listener << "\nx: " << x.transpose()
                     << "\ndelta: " << delta.transpose()
                     << "\nexpected: " << expected.transpose()
                     << "\nactual: " << actual.transpose()
                     << "\ndiff: " << (expected - actual).transpose()
                     << "\ndiffnorm : " << diffnorm;
    return false;
  }
  return true;
}

TEST(AutoDiffManifoldTest, QuaternionGenericDelta) {
  AutoDiffManifold<QuaternionFunctor, 4, 3> manifold;
  for (int trial = 0; trial < kNumTrials; ++trial) {
    const Vector x = RandomQuaternion();
    const Vector y = RandomQuaternion();
    Vector delta = Vector::Random(3);
    EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta));
    EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance);
  }
}

TEST(AutoDiffManifoldTest, QuaternionSmallDelta) {
  AutoDiffManifold<QuaternionFunctor, 4, 3> manifold;
  for (int trial = 0; trial < kNumTrials; ++trial) {
    const Vector x = RandomQuaternion();
    const Vector y = RandomQuaternion();
    Vector delta = Vector::Random(3);
    delta.normalize();
    delta *= 1e-6;
    EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta));
    EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance);
  }
}

TEST(AutoDiffManifold, QuaternionDeltaJustBelowPi) {
  AutoDiffManifold<QuaternionFunctor, 4, 3> manifold;
  for (int trial = 0; trial < kNumTrials; ++trial) {
    const Vector x = RandomQuaternion();
    const Vector y = RandomQuaternion();
    Vector delta = Vector::Random(3);
    delta.normalize();
    delta *= (M_PI - 1e-6);
    EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta));
    EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance);
  }
}

}  // namespace internal
}  // namespace ceres