1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/block_random_access_sparse_matrix.h"
#include <algorithm>
#include <memory>
#include <set>
#include <utility>
#include <vector>
#include "ceres/internal/export.h"
#include "ceres/triplet_sparse_matrix.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
using std::make_pair;
using std::pair;
using std::set;
using std::vector;
BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix(
const vector<int>& blocks, const set<pair<int, int>>& block_pairs)
: kMaxRowBlocks(10 * 1000 * 1000), blocks_(blocks) {
CHECK_LT(blocks.size(), kMaxRowBlocks);
// Build the row/column layout vector and count the number of scalar
// rows/columns.
int num_cols = 0;
block_positions_.reserve(blocks_.size());
for (int block_size : blocks_) {
block_positions_.push_back(num_cols);
num_cols += block_size;
}
// Count the number of scalar non-zero entries and build the layout
// object for looking into the values array of the
// TripletSparseMatrix.
int num_nonzeros = 0;
for (const auto& block_pair : block_pairs) {
const int row_block_size = blocks_[block_pair.first];
const int col_block_size = blocks_[block_pair.second];
num_nonzeros += row_block_size * col_block_size;
}
VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] "
<< num_nonzeros;
tsm_ =
std::make_unique<TripletSparseMatrix>(num_cols, num_cols, num_nonzeros);
tsm_->set_num_nonzeros(num_nonzeros);
int* rows = tsm_->mutable_rows();
int* cols = tsm_->mutable_cols();
double* values = tsm_->mutable_values();
int pos = 0;
for (const auto& block_pair : block_pairs) {
const int row_block_size = blocks_[block_pair.first];
const int col_block_size = blocks_[block_pair.second];
cell_values_.emplace_back(block_pair, values + pos);
layout_[IntPairToLong(block_pair.first, block_pair.second)] =
new CellInfo(values + pos);
pos += row_block_size * col_block_size;
}
// Fill the sparsity pattern of the underlying matrix.
for (const auto& block_pair : block_pairs) {
const int row_block_id = block_pair.first;
const int col_block_id = block_pair.second;
const int row_block_size = blocks_[row_block_id];
const int col_block_size = blocks_[col_block_id];
int pos =
layout_[IntPairToLong(row_block_id, col_block_id)]->values - values;
for (int r = 0; r < row_block_size; ++r) {
for (int c = 0; c < col_block_size; ++c, ++pos) {
rows[pos] = block_positions_[row_block_id] + r;
cols[pos] = block_positions_[col_block_id] + c;
values[pos] = 1.0;
DCHECK_LT(rows[pos], tsm_->num_rows());
DCHECK_LT(cols[pos], tsm_->num_rows());
}
}
}
}
// Assume that the user does not hold any locks on any cell blocks
// when they are calling SetZero.
BlockRandomAccessSparseMatrix::~BlockRandomAccessSparseMatrix() {
for (const auto& entry : layout_) {
delete entry.second;
}
}
CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id,
int col_block_id,
int* row,
int* col,
int* row_stride,
int* col_stride) {
const LayoutType::iterator it =
layout_.find(IntPairToLong(row_block_id, col_block_id));
if (it == layout_.end()) {
return nullptr;
}
// Each cell is stored contiguously as its own little dense matrix.
*row = 0;
*col = 0;
*row_stride = blocks_[row_block_id];
*col_stride = blocks_[col_block_id];
return it->second;
}
// Assume that the user does not hold any locks on any cell blocks
// when they are calling SetZero.
void BlockRandomAccessSparseMatrix::SetZero() {
if (tsm_->num_nonzeros()) {
VectorRef(tsm_->mutable_values(), tsm_->num_nonzeros()).setZero();
}
}
void BlockRandomAccessSparseMatrix::SymmetricRightMultiply(const double* x,
double* y) const {
for (const auto& cell_position_and_data : cell_values_) {
const int row = cell_position_and_data.first.first;
const int row_block_size = blocks_[row];
const int row_block_pos = block_positions_[row];
const int col = cell_position_and_data.first.second;
const int col_block_size = blocks_[col];
const int col_block_pos = block_positions_[col];
MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
cell_position_and_data.second,
row_block_size,
col_block_size,
x + col_block_pos,
y + row_block_pos);
// Since the matrix is symmetric, but only the upper triangular
// part is stored, if the block being accessed is not a diagonal
// block, then use the same block to do the corresponding lower
// triangular multiply also.
if (row != col) {
MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
cell_position_and_data.second,
row_block_size,
col_block_size,
x + row_block_pos,
y + col_block_pos);
}
}
}
} // namespace internal
} // namespace ceres
|