1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#ifndef CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
#define CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
#include <algorithm>
#include <vector>
#include "ceres/internal/disable_warnings.h"
#include "ceres/internal/export.h"
namespace ceres {
namespace internal {
// Extract the block sparsity pattern of the scalar compressed columns
// matrix and return it in compressed column form. The compressed
// column form is stored in two vectors block_rows, and block_cols,
// which correspond to the row and column arrays in a compressed
// column sparse matrix.
//
// If c_ij is the block in the matrix A corresponding to row block i
// and column block j, then it is expected that A contains at least
// one non-zero entry corresponding to the top left entry of c_ij,
// as that entry is used to detect the presence of a non-zero c_ij.
CERES_NO_EXPORT void CompressedColumnScalarMatrixToBlockMatrix(
const int* scalar_rows,
const int* scalar_cols,
const std::vector<int>& row_blocks,
const std::vector<int>& col_blocks,
std::vector<int>* block_rows,
std::vector<int>* block_cols);
// Given a set of blocks and a permutation of these blocks, compute
// the corresponding "scalar" ordering, where the scalar ordering of
// size sum(blocks).
CERES_NO_EXPORT void BlockOrderingToScalarOrdering(
const std::vector<int>& blocks,
const std::vector<int>& block_ordering,
std::vector<int>* scalar_ordering);
// Solve the linear system
//
// R * solution = rhs
//
// Where R is an upper triangular compressed column sparse matrix.
template <typename IntegerType>
void SolveUpperTriangularInPlace(IntegerType num_cols,
const IntegerType* rows,
const IntegerType* cols,
const double* values,
double* rhs_and_solution) {
for (IntegerType c = num_cols - 1; c >= 0; --c) {
rhs_and_solution[c] /= values[cols[c + 1] - 1];
for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
const IntegerType r = rows[idx];
const double v = values[idx];
rhs_and_solution[r] -= v * rhs_and_solution[c];
}
}
}
// Solve the linear system
//
// R' * solution = rhs
//
// Where R is an upper triangular compressed column sparse matrix.
template <typename IntegerType>
void SolveUpperTriangularTransposeInPlace(IntegerType num_cols,
const IntegerType* rows,
const IntegerType* cols,
const double* values,
double* rhs_and_solution) {
for (IntegerType c = 0; c < num_cols; ++c) {
for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
const IntegerType r = rows[idx];
const double v = values[idx];
rhs_and_solution[c] -= v * rhs_and_solution[r];
}
rhs_and_solution[c] = rhs_and_solution[c] / values[cols[c + 1] - 1];
}
}
// Given a upper triangular matrix R in compressed column form, solve
// the linear system,
//
// R'R x = b
//
// Where b is all zeros except for rhs_nonzero_index, where it is
// equal to one.
//
// The function exploits this knowledge to reduce the number of
// floating point operations.
template <typename IntegerType>
void SolveRTRWithSparseRHS(IntegerType num_cols,
const IntegerType* rows,
const IntegerType* cols,
const double* values,
const int rhs_nonzero_index,
double* solution) {
std::fill(solution, solution + num_cols, 0.0);
solution[rhs_nonzero_index] = 1.0 / values[cols[rhs_nonzero_index + 1] - 1];
for (IntegerType c = rhs_nonzero_index + 1; c < num_cols; ++c) {
for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
const IntegerType r = rows[idx];
if (r < rhs_nonzero_index) continue;
const double v = values[idx];
solution[c] -= v * solution[r];
}
solution[c] = solution[c] / values[cols[c + 1] - 1];
}
SolveUpperTriangularInPlace(num_cols, rows, cols, values, solution);
}
} // namespace internal
} // namespace ceres
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
|