1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#include "ceres/compressed_row_jacobian_writer.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "ceres/casts.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/scratch_evaluate_preparer.h"
namespace ceres {
namespace internal {
using std::adjacent_find;
using std::make_pair;
using std::pair;
using std::vector;
void CompressedRowJacobianWriter::PopulateJacobianRowAndColumnBlockVectors(
const Program* program, CompressedRowSparseMatrix* jacobian) {
const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
vector<int>& col_blocks = *(jacobian->mutable_col_blocks());
col_blocks.resize(parameter_blocks.size());
for (int i = 0; i < parameter_blocks.size(); ++i) {
col_blocks[i] = parameter_blocks[i]->TangentSize();
}
const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
vector<int>& row_blocks = *(jacobian->mutable_row_blocks());
row_blocks.resize(residual_blocks.size());
for (int i = 0; i < residual_blocks.size(); ++i) {
row_blocks[i] = residual_blocks[i]->NumResiduals();
}
}
void CompressedRowJacobianWriter::GetOrderedParameterBlocks(
const Program* program,
int residual_id,
vector<pair<int, int>>* evaluated_jacobian_blocks) {
const ResidualBlock* residual_block = program->residual_blocks()[residual_id];
const int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int j = 0; j < num_parameter_blocks; ++j) {
const ParameterBlock* parameter_block =
residual_block->parameter_blocks()[j];
if (!parameter_block->IsConstant()) {
evaluated_jacobian_blocks->push_back(
make_pair(parameter_block->index(), j));
}
}
std::sort(evaluated_jacobian_blocks->begin(),
evaluated_jacobian_blocks->end());
}
std::unique_ptr<SparseMatrix> CompressedRowJacobianWriter::CreateJacobian()
const {
const vector<ResidualBlock*>& residual_blocks = program_->residual_blocks();
int total_num_residuals = program_->NumResiduals();
int total_num_effective_parameters = program_->NumEffectiveParameters();
// Count the number of jacobian nonzeros.
int num_jacobian_nonzeros = 0;
for (auto* residual_block : residual_blocks) {
const int num_residuals = residual_block->NumResiduals();
const int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int j = 0; j < num_parameter_blocks; ++j) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
if (!parameter_block->IsConstant()) {
num_jacobian_nonzeros += num_residuals * parameter_block->TangentSize();
}
}
}
// Allocate storage for the jacobian with some extra space at the end.
// Allocate more space than needed to store the jacobian so that when the LM
// algorithm adds the diagonal, no reallocation is necessary. This reduces
// peak memory usage significantly.
std::unique_ptr<CompressedRowSparseMatrix> jacobian =
std::make_unique<CompressedRowSparseMatrix>(
total_num_residuals,
total_num_effective_parameters,
num_jacobian_nonzeros + total_num_effective_parameters);
// At this stage, the CompressedRowSparseMatrix is an invalid state. But this
// seems to be the only way to construct it without doing a memory copy.
int* rows = jacobian->mutable_rows();
int* cols = jacobian->mutable_cols();
int row_pos = 0;
rows[0] = 0;
for (auto* residual_block : residual_blocks) {
const int num_parameter_blocks = residual_block->NumParameterBlocks();
// Count the number of derivatives for a row of this residual block and
// build a list of active parameter block indices.
int num_derivatives = 0;
vector<int> parameter_indices;
for (int j = 0; j < num_parameter_blocks; ++j) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
if (!parameter_block->IsConstant()) {
parameter_indices.push_back(parameter_block->index());
num_derivatives += parameter_block->TangentSize();
}
}
// Sort the parameters by their position in the state vector.
sort(parameter_indices.begin(), parameter_indices.end());
if (adjacent_find(parameter_indices.begin(), parameter_indices.end()) !=
parameter_indices.end()) {
std::string parameter_block_description;
for (int j = 0; j < num_parameter_blocks; ++j) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
parameter_block_description += parameter_block->ToString() + "\n";
}
LOG(FATAL) << "Ceres internal error: "
<< "Duplicate parameter blocks detected in a cost function. "
<< "This should never happen. Please report this to "
<< "the Ceres developers.\n"
<< "Residual Block: " << residual_block->ToString() << "\n"
<< "Parameter Blocks: " << parameter_block_description;
}
// Update the row indices.
const int num_residuals = residual_block->NumResiduals();
for (int j = 0; j < num_residuals; ++j) {
rows[row_pos + j + 1] = rows[row_pos + j] + num_derivatives;
}
// Iterate over parameter blocks in the order which they occur in the
// parameter vector. This code mirrors that in Write(), where jacobian
// values are updated.
int col_pos = 0;
for (int parameter_index : parameter_indices) {
ParameterBlock* parameter_block =
program_->parameter_blocks()[parameter_index];
const int parameter_block_size = parameter_block->TangentSize();
for (int r = 0; r < num_residuals; ++r) {
// This is the position in the values array of the jacobian where this
// row of the jacobian block should go.
const int column_block_begin = rows[row_pos + r] + col_pos;
for (int c = 0; c < parameter_block_size; ++c) {
cols[column_block_begin + c] = parameter_block->delta_offset() + c;
}
}
col_pos += parameter_block_size;
}
row_pos += num_residuals;
}
CHECK_EQ(num_jacobian_nonzeros, rows[total_num_residuals]);
PopulateJacobianRowAndColumnBlockVectors(program_, jacobian.get());
return jacobian;
}
void CompressedRowJacobianWriter::Write(int residual_id,
int residual_offset,
double** jacobians,
SparseMatrix* base_jacobian) {
auto* jacobian = down_cast<CompressedRowSparseMatrix*>(base_jacobian);
double* jacobian_values = jacobian->mutable_values();
const int* jacobian_rows = jacobian->rows();
const ResidualBlock* residual_block =
program_->residual_blocks()[residual_id];
const int num_residuals = residual_block->NumResiduals();
vector<pair<int, int>> evaluated_jacobian_blocks;
GetOrderedParameterBlocks(program_, residual_id, &evaluated_jacobian_blocks);
// Where in the current row does the jacobian for a parameter block begin.
int col_pos = 0;
// Iterate over the jacobian blocks in increasing order of their
// positions in the reduced parameter vector.
for (auto& evaluated_jacobian_block : evaluated_jacobian_blocks) {
const ParameterBlock* parameter_block =
program_->parameter_blocks()[evaluated_jacobian_block.first];
const int argument = evaluated_jacobian_block.second;
const int parameter_block_size = parameter_block->TangentSize();
// Copy one row of the jacobian block at a time.
for (int r = 0; r < num_residuals; ++r) {
// Position of the r^th row of the current jacobian block.
const double* block_row_begin =
jacobians[argument] + r * parameter_block_size;
// Position in the values array of the jacobian where this
// row of the jacobian block should go.
double* column_block_begin =
jacobian_values + jacobian_rows[residual_offset + r] + col_pos;
std::copy(block_row_begin,
block_row_begin + parameter_block_size,
column_block_begin);
}
col_pos += parameter_block_size;
}
}
} // namespace internal
} // namespace ceres
|