1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/compressed_row_sparse_matrix.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include <vector>
#include "ceres/crs_matrix.h"
#include "ceres/internal/export.h"
#include "ceres/random.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
using std::vector;
namespace {
// Helper functor used by the constructor for reordering the contents
// of a TripletSparseMatrix. This comparator assumes thay there are no
// duplicates in the pair of arrays rows and cols, i.e., there is no
// indices i and j (not equal to each other) s.t.
//
// rows[i] == rows[j] && cols[i] == cols[j]
//
// If this is the case, this functor will not be a StrictWeakOrdering.
struct RowColLessThan {
RowColLessThan(const int* rows, const int* cols) : rows(rows), cols(cols) {}
bool operator()(const int x, const int y) const {
if (rows[x] == rows[y]) {
return (cols[x] < cols[y]);
}
return (rows[x] < rows[y]);
}
const int* rows;
const int* cols;
};
void TransposeForCompressedRowSparseStructure(const int num_rows,
const int num_cols,
const int num_nonzeros,
const int* rows,
const int* cols,
const double* values,
int* transpose_rows,
int* transpose_cols,
double* transpose_values) {
// Explicitly zero out transpose_rows.
std::fill(transpose_rows, transpose_rows + num_cols + 1, 0);
// Count the number of entries in each column of the original matrix
// and assign to transpose_rows[col + 1].
for (int idx = 0; idx < num_nonzeros; ++idx) {
++transpose_rows[cols[idx] + 1];
}
// Compute the starting position for each row in the transpose by
// computing the cumulative sum of the entries of transpose_rows.
for (int i = 1; i < num_cols + 1; ++i) {
transpose_rows[i] += transpose_rows[i - 1];
}
// Populate transpose_cols and (optionally) transpose_values by
// walking the entries of the source matrices. For each entry that
// is added, the value of transpose_row is incremented allowing us
// to keep track of where the next entry for that row should go.
//
// As a result transpose_row is shifted to the left by one entry.
for (int r = 0; r < num_rows; ++r) {
for (int idx = rows[r]; idx < rows[r + 1]; ++idx) {
const int c = cols[idx];
const int transpose_idx = transpose_rows[c]++;
transpose_cols[transpose_idx] = r;
if (values != nullptr && transpose_values != nullptr) {
transpose_values[transpose_idx] = values[idx];
}
}
}
// This loop undoes the left shift to transpose_rows introduced by
// the previous loop.
for (int i = num_cols - 1; i > 0; --i) {
transpose_rows[i] = transpose_rows[i - 1];
}
transpose_rows[0] = 0;
}
void AddRandomBlock(const int num_rows,
const int num_cols,
const int row_block_begin,
const int col_block_begin,
std::vector<int>* rows,
std::vector<int>* cols,
std::vector<double>* values) {
for (int r = 0; r < num_rows; ++r) {
for (int c = 0; c < num_cols; ++c) {
rows->push_back(row_block_begin + r);
cols->push_back(col_block_begin + c);
values->push_back(RandNormal());
}
}
}
void AddSymmetricRandomBlock(const int num_rows,
const int row_block_begin,
std::vector<int>* rows,
std::vector<int>* cols,
std::vector<double>* values) {
for (int r = 0; r < num_rows; ++r) {
for (int c = r; c < num_rows; ++c) {
const double v = RandNormal();
rows->push_back(row_block_begin + r);
cols->push_back(row_block_begin + c);
values->push_back(v);
if (r != c) {
rows->push_back(row_block_begin + c);
cols->push_back(row_block_begin + r);
values->push_back(v);
}
}
}
}
} // namespace
// This constructor gives you a semi-initialized CompressedRowSparseMatrix.
CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows,
int num_cols,
int max_num_nonzeros) {
num_rows_ = num_rows;
num_cols_ = num_cols;
storage_type_ = UNSYMMETRIC;
rows_.resize(num_rows + 1, 0);
cols_.resize(max_num_nonzeros, 0);
values_.resize(max_num_nonzeros, 0.0);
VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_
<< " max_num_nonzeros: " << cols_.size() << ". Allocating "
<< (num_rows_ + 1) * sizeof(int) + // NOLINT
cols_.size() * sizeof(int) + // NOLINT
cols_.size() * sizeof(double); // NOLINT
}
std::unique_ptr<CompressedRowSparseMatrix>
CompressedRowSparseMatrix::FromTripletSparseMatrix(
const TripletSparseMatrix& input) {
return CompressedRowSparseMatrix::FromTripletSparseMatrix(input, false);
}
std::unique_ptr<CompressedRowSparseMatrix>
CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(
const TripletSparseMatrix& input) {
return CompressedRowSparseMatrix::FromTripletSparseMatrix(input, true);
}
std::unique_ptr<CompressedRowSparseMatrix>
CompressedRowSparseMatrix::FromTripletSparseMatrix(
const TripletSparseMatrix& input, bool transpose) {
int num_rows = input.num_rows();
int num_cols = input.num_cols();
const int* rows = input.rows();
const int* cols = input.cols();
const double* values = input.values();
if (transpose) {
std::swap(num_rows, num_cols);
std::swap(rows, cols);
}
// index is the list of indices into the TripletSparseMatrix input.
vector<int> index(input.num_nonzeros(), 0);
for (int i = 0; i < input.num_nonzeros(); ++i) {
index[i] = i;
}
// Sort index such that the entries of m are ordered by row and ties
// are broken by column.
std::sort(index.begin(), index.end(), RowColLessThan(rows, cols));
VLOG(1) << "# of rows: " << num_rows << " # of columns: " << num_cols
<< " num_nonzeros: " << input.num_nonzeros() << ". Allocating "
<< ((num_rows + 1) * sizeof(int) + // NOLINT
input.num_nonzeros() * sizeof(int) + // NOLINT
input.num_nonzeros() * sizeof(double)); // NOLINT
std::unique_ptr<CompressedRowSparseMatrix> output =
std::make_unique<CompressedRowSparseMatrix>(
num_rows, num_cols, input.num_nonzeros());
if (num_rows == 0) {
// No data to copy.
return output;
}
// Copy the contents of the cols and values array in the order given
// by index and count the number of entries in each row.
int* output_rows = output->mutable_rows();
int* output_cols = output->mutable_cols();
double* output_values = output->mutable_values();
output_rows[0] = 0;
for (int i = 0; i < index.size(); ++i) {
const int idx = index[i];
++output_rows[rows[idx] + 1];
output_cols[i] = cols[idx];
output_values[i] = values[idx];
}
// Find the cumulative sum of the row counts.
for (int i = 1; i < num_rows + 1; ++i) {
output_rows[i] += output_rows[i - 1];
}
CHECK_EQ(output->num_nonzeros(), input.num_nonzeros());
return output;
}
CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal,
int num_rows) {
CHECK(diagonal != nullptr);
num_rows_ = num_rows;
num_cols_ = num_rows;
storage_type_ = UNSYMMETRIC;
rows_.resize(num_rows + 1);
cols_.resize(num_rows);
values_.resize(num_rows);
rows_[0] = 0;
for (int i = 0; i < num_rows_; ++i) {
cols_[i] = i;
values_[i] = diagonal[i];
rows_[i + 1] = i + 1;
}
CHECK_EQ(num_nonzeros(), num_rows);
}
CompressedRowSparseMatrix::~CompressedRowSparseMatrix() = default;
void CompressedRowSparseMatrix::SetZero() {
std::fill(values_.begin(), values_.end(), 0);
}
// TODO(sameeragarwal): Make RightMultiply and LeftMultiply
// block-aware for higher performance.
void CompressedRowSparseMatrix::RightMultiply(const double* x,
double* y) const {
CHECK(x != nullptr);
CHECK(y != nullptr);
if (storage_type_ == UNSYMMETRIC) {
for (int r = 0; r < num_rows_; ++r) {
for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
const int c = cols_[idx];
const double v = values_[idx];
y[r] += v * x[c];
}
}
} else if (storage_type_ == UPPER_TRIANGULAR) {
// Because of their block structure, we will have entries that lie
// above (below) the diagonal for lower (upper) triangular matrices,
// so the loops below need to account for this.
for (int r = 0; r < num_rows_; ++r) {
int idx = rows_[r];
const int idx_end = rows_[r + 1];
// For upper triangular matrices r <= c, so skip entries with r
// > c.
while (idx < idx_end && r > cols_[idx]) {
++idx;
}
for (; idx < idx_end; ++idx) {
const int c = cols_[idx];
const double v = values_[idx];
y[r] += v * x[c];
// Since we are only iterating over the upper triangular part
// of the matrix, add contributions for the strictly lower
// triangular part.
if (r != c) {
y[c] += v * x[r];
}
}
}
} else if (storage_type_ == LOWER_TRIANGULAR) {
for (int r = 0; r < num_rows_; ++r) {
int idx = rows_[r];
const int idx_end = rows_[r + 1];
// For lower triangular matrices, we only iterate till we are r >=
// c.
for (; idx < idx_end && r >= cols_[idx]; ++idx) {
const int c = cols_[idx];
const double v = values_[idx];
y[r] += v * x[c];
// Since we are only iterating over the lower triangular part
// of the matrix, add contributions for the strictly upper
// triangular part.
if (r != c) {
y[c] += v * x[r];
}
}
}
} else {
LOG(FATAL) << "Unknown storage type: " << storage_type_;
}
}
void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const {
CHECK(x != nullptr);
CHECK(y != nullptr);
if (storage_type_ == UNSYMMETRIC) {
for (int r = 0; r < num_rows_; ++r) {
for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
y[cols_[idx]] += values_[idx] * x[r];
}
}
} else {
// Since the matrix is symmetric, LeftMultiply = RightMultiply.
RightMultiply(x, y);
}
}
void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const {
CHECK(x != nullptr);
std::fill(x, x + num_cols_, 0.0);
if (storage_type_ == UNSYMMETRIC) {
for (int idx = 0; idx < rows_[num_rows_]; ++idx) {
x[cols_[idx]] += values_[idx] * values_[idx];
}
} else if (storage_type_ == UPPER_TRIANGULAR) {
// Because of their block structure, we will have entries that lie
// above (below) the diagonal for lower (upper) triangular
// matrices, so the loops below need to account for this.
for (int r = 0; r < num_rows_; ++r) {
int idx = rows_[r];
const int idx_end = rows_[r + 1];
// For upper triangular matrices r <= c, so skip entries with r
// > c.
while (idx < idx_end && r > cols_[idx]) {
++idx;
}
for (; idx < idx_end; ++idx) {
const int c = cols_[idx];
const double v2 = values_[idx] * values_[idx];
x[c] += v2;
// Since we are only iterating over the upper triangular part
// of the matrix, add contributions for the strictly lower
// triangular part.
if (r != c) {
x[r] += v2;
}
}
}
} else if (storage_type_ == LOWER_TRIANGULAR) {
for (int r = 0; r < num_rows_; ++r) {
int idx = rows_[r];
const int idx_end = rows_[r + 1];
// For lower triangular matrices, we only iterate till we are r >=
// c.
for (; idx < idx_end && r >= cols_[idx]; ++idx) {
const int c = cols_[idx];
const double v2 = values_[idx] * values_[idx];
x[c] += v2;
// Since we are only iterating over the lower triangular part
// of the matrix, add contributions for the strictly upper
// triangular part.
if (r != c) {
x[r] += v2;
}
}
}
} else {
LOG(FATAL) << "Unknown storage type: " << storage_type_;
}
}
void CompressedRowSparseMatrix::ScaleColumns(const double* scale) {
CHECK(scale != nullptr);
for (int idx = 0; idx < rows_[num_rows_]; ++idx) {
values_[idx] *= scale[cols_[idx]];
}
}
void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
CHECK(dense_matrix != nullptr);
dense_matrix->resize(num_rows_, num_cols_);
dense_matrix->setZero();
for (int r = 0; r < num_rows_; ++r) {
for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
(*dense_matrix)(r, cols_[idx]) = values_[idx];
}
}
}
void CompressedRowSparseMatrix::DeleteRows(int delta_rows) {
CHECK_GE(delta_rows, 0);
CHECK_LE(delta_rows, num_rows_);
CHECK_EQ(storage_type_, UNSYMMETRIC);
num_rows_ -= delta_rows;
rows_.resize(num_rows_ + 1);
// The rest of the code updates the block information. Immediately
// return in case of no block information.
if (row_blocks_.empty()) {
return;
}
// Walk the list of row blocks until we reach the new number of rows
// and the drop the rest of the row blocks.
int num_row_blocks = 0;
int num_rows = 0;
while (num_row_blocks < row_blocks_.size() && num_rows < num_rows_) {
num_rows += row_blocks_[num_row_blocks];
++num_row_blocks;
}
row_blocks_.resize(num_row_blocks);
}
void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) {
CHECK_EQ(storage_type_, UNSYMMETRIC);
CHECK_EQ(m.num_cols(), num_cols_);
CHECK((row_blocks_.empty() && m.row_blocks().empty()) ||
(!row_blocks_.empty() && !m.row_blocks().empty()))
<< "Cannot append a matrix with row blocks to one without and vice versa."
<< "This matrix has : " << row_blocks_.size() << " row blocks."
<< "The matrix being appended has: " << m.row_blocks().size()
<< " row blocks.";
if (m.num_rows() == 0) {
return;
}
if (cols_.size() < num_nonzeros() + m.num_nonzeros()) {
cols_.resize(num_nonzeros() + m.num_nonzeros());
values_.resize(num_nonzeros() + m.num_nonzeros());
}
// Copy the contents of m into this matrix.
DCHECK_LT(num_nonzeros(), cols_.size());
if (m.num_nonzeros() > 0) {
std::copy(m.cols(), m.cols() + m.num_nonzeros(), &cols_[num_nonzeros()]);
std::copy(
m.values(), m.values() + m.num_nonzeros(), &values_[num_nonzeros()]);
}
rows_.resize(num_rows_ + m.num_rows() + 1);
// new_rows = [rows_, m.row() + rows_[num_rows_]]
std::fill(rows_.begin() + num_rows_,
rows_.begin() + num_rows_ + m.num_rows() + 1,
rows_[num_rows_]);
for (int r = 0; r < m.num_rows() + 1; ++r) {
rows_[num_rows_ + r] += m.rows()[r];
}
num_rows_ += m.num_rows();
// The rest of the code updates the block information. Immediately
// return in case of no block information.
if (row_blocks_.empty()) {
return;
}
row_blocks_.insert(
row_blocks_.end(), m.row_blocks().begin(), m.row_blocks().end());
}
void CompressedRowSparseMatrix::ToTextFile(FILE* file) const {
CHECK(file != nullptr);
for (int r = 0; r < num_rows_; ++r) {
for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
fprintf(file, "% 10d % 10d %17f\n", r, cols_[idx], values_[idx]);
}
}
}
void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const {
matrix->num_rows = num_rows_;
matrix->num_cols = num_cols_;
matrix->rows = rows_;
matrix->cols = cols_;
matrix->values = values_;
// Trim.
matrix->rows.resize(matrix->num_rows + 1);
matrix->cols.resize(matrix->rows[matrix->num_rows]);
matrix->values.resize(matrix->rows[matrix->num_rows]);
}
void CompressedRowSparseMatrix::SetMaxNumNonZeros(int num_nonzeros) {
CHECK_GE(num_nonzeros, 0);
cols_.resize(num_nonzeros);
values_.resize(num_nonzeros);
}
std::unique_ptr<CompressedRowSparseMatrix>
CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
const double* diagonal, const vector<int>& blocks) {
int num_rows = 0;
int num_nonzeros = 0;
for (int block_size : blocks) {
num_rows += block_size;
num_nonzeros += block_size * block_size;
}
std::unique_ptr<CompressedRowSparseMatrix> matrix =
std::make_unique<CompressedRowSparseMatrix>(
num_rows, num_rows, num_nonzeros);
int* rows = matrix->mutable_rows();
int* cols = matrix->mutable_cols();
double* values = matrix->mutable_values();
std::fill(values, values + num_nonzeros, 0.0);
int idx_cursor = 0;
int col_cursor = 0;
for (int block_size : blocks) {
for (int r = 0; r < block_size; ++r) {
*(rows++) = idx_cursor;
values[idx_cursor + r] = diagonal[col_cursor + r];
for (int c = 0; c < block_size; ++c, ++idx_cursor) {
*(cols++) = col_cursor + c;
}
}
col_cursor += block_size;
}
*rows = idx_cursor;
*matrix->mutable_row_blocks() = blocks;
*matrix->mutable_col_blocks() = blocks;
CHECK_EQ(idx_cursor, num_nonzeros);
CHECK_EQ(col_cursor, num_rows);
return matrix;
}
std::unique_ptr<CompressedRowSparseMatrix>
CompressedRowSparseMatrix::Transpose() const {
std::unique_ptr<CompressedRowSparseMatrix> transpose =
std::make_unique<CompressedRowSparseMatrix>(
num_cols_, num_rows_, num_nonzeros());
switch (storage_type_) {
case UNSYMMETRIC:
transpose->set_storage_type(UNSYMMETRIC);
break;
case LOWER_TRIANGULAR:
transpose->set_storage_type(UPPER_TRIANGULAR);
break;
case UPPER_TRIANGULAR:
transpose->set_storage_type(LOWER_TRIANGULAR);
break;
default:
LOG(FATAL) << "Unknown storage type: " << storage_type_;
};
TransposeForCompressedRowSparseStructure(num_rows(),
num_cols(),
num_nonzeros(),
rows(),
cols(),
values(),
transpose->mutable_rows(),
transpose->mutable_cols(),
transpose->mutable_values());
// The rest of the code updates the block information. Immediately
// return in case of no block information.
if (row_blocks_.empty()) {
return transpose;
}
*(transpose->mutable_row_blocks()) = col_blocks_;
*(transpose->mutable_col_blocks()) = row_blocks_;
return transpose;
}
std::unique_ptr<CompressedRowSparseMatrix>
CompressedRowSparseMatrix::CreateRandomMatrix(
CompressedRowSparseMatrix::RandomMatrixOptions options) {
CHECK_GT(options.num_row_blocks, 0);
CHECK_GT(options.min_row_block_size, 0);
CHECK_GT(options.max_row_block_size, 0);
CHECK_LE(options.min_row_block_size, options.max_row_block_size);
if (options.storage_type == UNSYMMETRIC) {
CHECK_GT(options.num_col_blocks, 0);
CHECK_GT(options.min_col_block_size, 0);
CHECK_GT(options.max_col_block_size, 0);
CHECK_LE(options.min_col_block_size, options.max_col_block_size);
} else {
// Symmetric matrices (LOWER_TRIANGULAR or UPPER_TRIANGULAR);
options.num_col_blocks = options.num_row_blocks;
options.min_col_block_size = options.min_row_block_size;
options.max_col_block_size = options.max_row_block_size;
}
CHECK_GT(options.block_density, 0.0);
CHECK_LE(options.block_density, 1.0);
vector<int> row_blocks;
vector<int> col_blocks;
// Generate the row block structure.
for (int i = 0; i < options.num_row_blocks; ++i) {
// Generate a random integer in [min_row_block_size, max_row_block_size]
const int delta_block_size =
Uniform(options.max_row_block_size - options.min_row_block_size);
row_blocks.push_back(options.min_row_block_size + delta_block_size);
}
if (options.storage_type == UNSYMMETRIC) {
// Generate the col block structure.
for (int i = 0; i < options.num_col_blocks; ++i) {
// Generate a random integer in [min_col_block_size, max_col_block_size]
const int delta_block_size =
Uniform(options.max_col_block_size - options.min_col_block_size);
col_blocks.push_back(options.min_col_block_size + delta_block_size);
}
} else {
// Symmetric matrices (LOWER_TRIANGULAR or UPPER_TRIANGULAR);
col_blocks = row_blocks;
}
vector<int> tsm_rows;
vector<int> tsm_cols;
vector<double> tsm_values;
// For ease of construction, we are going to generate the
// CompressedRowSparseMatrix by generating it as a
// TripletSparseMatrix and then converting it to a
// CompressedRowSparseMatrix.
// It is possible that the random matrix is empty which is likely
// not what the user wants, so do the matrix generation till we have
// at least one non-zero entry.
while (tsm_values.empty()) {
tsm_rows.clear();
tsm_cols.clear();
tsm_values.clear();
int row_block_begin = 0;
for (int r = 0; r < options.num_row_blocks; ++r) {
int col_block_begin = 0;
for (int c = 0; c < options.num_col_blocks; ++c) {
if (((options.storage_type == UPPER_TRIANGULAR) && (r > c)) ||
((options.storage_type == LOWER_TRIANGULAR) && (r < c))) {
col_block_begin += col_blocks[c];
continue;
}
// Randomly determine if this block is present or not.
if (RandDouble() <= options.block_density) {
// If the matrix is symmetric, then we take care to generate
// symmetric diagonal blocks.
if (options.storage_type == UNSYMMETRIC || r != c) {
AddRandomBlock(row_blocks[r],
col_blocks[c],
row_block_begin,
col_block_begin,
&tsm_rows,
&tsm_cols,
&tsm_values);
} else {
AddSymmetricRandomBlock(row_blocks[r],
row_block_begin,
&tsm_rows,
&tsm_cols,
&tsm_values);
}
}
col_block_begin += col_blocks[c];
}
row_block_begin += row_blocks[r];
}
}
const int num_rows = std::accumulate(row_blocks.begin(), row_blocks.end(), 0);
const int num_cols = std::accumulate(col_blocks.begin(), col_blocks.end(), 0);
const bool kDoNotTranspose = false;
std::unique_ptr<CompressedRowSparseMatrix> matrix =
CompressedRowSparseMatrix::FromTripletSparseMatrix(
TripletSparseMatrix(
num_rows, num_cols, tsm_rows, tsm_cols, tsm_values),
kDoNotTranspose);
(*matrix->mutable_row_blocks()) = row_blocks;
(*matrix->mutable_col_blocks()) = col_blocks;
matrix->set_storage_type(options.storage_type);
return matrix;
}
} // namespace internal
} // namespace ceres
|