1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// A preconditioned conjugate gradients solver
// (ConjugateGradientsSolver) for positive semidefinite linear
// systems.
//
// We have also augmented the termination criterion used by this
// solver to support not just residual based termination but also
// termination based on decrease in the value of the quadratic model
// that CG optimizes.
#include "ceres/conjugate_gradients_solver.h"
#include <cmath>
#include <cstddef>
#include <utility>
#include "ceres/internal/eigen.h"
#include "ceres/linear_operator.h"
#include "ceres/stringprintf.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
namespace {
bool IsZeroOrInfinity(double x) { return ((x == 0.0) || std::isinf(x)); }
} // namespace
ConjugateGradientsSolver::ConjugateGradientsSolver(
LinearSolver::Options options)
: options_(std::move(options)) {}
LinearSolver::Summary ConjugateGradientsSolver::Solve(
LinearOperator* A,
const double* b,
const LinearSolver::PerSolveOptions& per_solve_options,
double* x) {
CHECK(A != nullptr);
CHECK(x != nullptr);
CHECK(b != nullptr);
CHECK_EQ(A->num_rows(), A->num_cols());
LinearSolver::Summary summary;
summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE;
summary.message = "Maximum number of iterations reached.";
summary.num_iterations = 0;
const int num_cols = A->num_cols();
VectorRef xref(x, num_cols);
ConstVectorRef bref(b, num_cols);
const double norm_b = bref.norm();
if (norm_b == 0.0) {
xref.setZero();
summary.termination_type = LINEAR_SOLVER_SUCCESS;
summary.message = "Convergence. |b| = 0.";
return summary;
}
Vector r(num_cols);
Vector p(num_cols);
Vector z(num_cols);
Vector tmp(num_cols);
const double tol_r = per_solve_options.r_tolerance * norm_b;
tmp.setZero();
A->RightMultiply(x, tmp.data());
r = bref - tmp;
double norm_r = r.norm();
if (options_.min_num_iterations == 0 && norm_r <= tol_r) {
summary.termination_type = LINEAR_SOLVER_SUCCESS;
summary.message =
StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r);
return summary;
}
double rho = 1.0;
// Initial value of the quadratic model Q = x'Ax - 2 * b'x.
double Q0 = -1.0 * xref.dot(bref + r);
for (summary.num_iterations = 1;; ++summary.num_iterations) {
// Apply preconditioner
if (per_solve_options.preconditioner != nullptr) {
z.setZero();
per_solve_options.preconditioner->RightMultiply(r.data(), z.data());
} else {
z = r;
}
double last_rho = rho;
rho = r.dot(z);
if (IsZeroOrInfinity(rho)) {
summary.termination_type = LINEAR_SOLVER_FAILURE;
summary.message = StringPrintf("Numerical failure. rho = r'z = %e.", rho);
break;
}
if (summary.num_iterations == 1) {
p = z;
} else {
double beta = rho / last_rho;
if (IsZeroOrInfinity(beta)) {
summary.termination_type = LINEAR_SOLVER_FAILURE;
summary.message = StringPrintf(
"Numerical failure. beta = rho_n / rho_{n-1} = %e, "
"rho_n = %e, rho_{n-1} = %e",
beta,
rho,
last_rho);
break;
}
p = z + beta * p;
}
Vector& q = z;
q.setZero();
A->RightMultiply(p.data(), q.data());
const double pq = p.dot(q);
if ((pq <= 0) || std::isinf(pq)) {
summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE;
summary.message = StringPrintf(
"Matrix is indefinite, no more progress can be made. "
"p'q = %e. |p| = %e, |q| = %e",
pq,
p.norm(),
q.norm());
break;
}
const double alpha = rho / pq;
if (std::isinf(alpha)) {
summary.termination_type = LINEAR_SOLVER_FAILURE;
summary.message = StringPrintf(
"Numerical failure. alpha = rho / pq = %e, rho = %e, pq = %e.",
alpha,
rho,
pq);
break;
}
xref = xref + alpha * p;
// Ideally we would just use the update r = r - alpha*q to keep
// track of the residual vector. However this estimate tends to
// drift over time due to round off errors. Thus every
// residual_reset_period iterations, we calculate the residual as
// r = b - Ax. We do not do this every iteration because this
// requires an additional matrix vector multiply which would
// double the complexity of the CG algorithm.
if (summary.num_iterations % options_.residual_reset_period == 0) {
tmp.setZero();
A->RightMultiply(x, tmp.data());
r = bref - tmp;
} else {
r = r - alpha * q;
}
// Quadratic model based termination.
// Q1 = x'Ax - 2 * b' x.
const double Q1 = -1.0 * xref.dot(bref + r);
// For PSD matrices A, let
//
// Q(x) = x'Ax - 2b'x
//
// be the cost of the quadratic function defined by A and b. Then,
// the solver terminates at iteration i if
//
// i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
//
// This termination criterion is more useful when using CG to
// solve the Newton step. This particular convergence test comes
// from Stephen Nash's work on truncated Newton
// methods. References:
//
// 1. Stephen G. Nash & Ariela Sofer, Assessing A Search
// Direction Within A Truncated Newton Method, Operation
// Research Letters 9(1990) 219-221.
//
// 2. Stephen G. Nash, A Survey of Truncated Newton Methods,
// Journal of Computational and Applied Mathematics,
// 124(1-2), 45-59, 2000.
//
const double zeta = summary.num_iterations * (Q1 - Q0) / Q1;
if (zeta < per_solve_options.q_tolerance &&
summary.num_iterations >= options_.min_num_iterations) {
summary.termination_type = LINEAR_SOLVER_SUCCESS;
summary.message =
StringPrintf("Iteration: %d Convergence: zeta = %e < %e. |r| = %e",
summary.num_iterations,
zeta,
per_solve_options.q_tolerance,
r.norm());
break;
}
Q0 = Q1;
// Residual based termination.
norm_r = r.norm();
if (norm_r <= tol_r &&
summary.num_iterations >= options_.min_num_iterations) {
summary.termination_type = LINEAR_SOLVER_SUCCESS;
summary.message =
StringPrintf("Iteration: %d Convergence. |r| = %e <= %e.",
summary.num_iterations,
norm_r,
tol_r);
break;
}
if (summary.num_iterations >= options_.max_num_iterations) {
break;
}
}
return summary;
}
} // namespace internal
} // namespace ceres
|