1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: strandmark@google.com (Petter Strandmark)
// This include must come before any #ifndef check on Ceres compile options.
#include "ceres/internal/config.h"
#ifndef CERES_NO_CXSPARSE
#include <memory>
#include <string>
#include <vector>
#include "ceres/compressed_col_sparse_matrix_utils.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/cxsparse.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
using std::vector;
CXSparse::CXSparse() : scratch_(nullptr), scratch_size_(0) {}
CXSparse::~CXSparse() {
if (scratch_size_ > 0) {
cs_di_free(scratch_);
}
}
csn* CXSparse::Cholesky(cs_di* A, cs_dis* symbolic_factor) {
return cs_di_chol(A, symbolic_factor);
}
void CXSparse::Solve(cs_dis* symbolic_factor, csn* numeric_factor, double* b) {
// Make sure we have enough scratch space available.
const int num_cols = numeric_factor->L->n;
if (scratch_size_ < num_cols) {
if (scratch_size_ > 0) {
cs_di_free(scratch_);
}
scratch_ =
reinterpret_cast<CS_ENTRY*>(cs_di_malloc(num_cols, sizeof(CS_ENTRY)));
scratch_size_ = num_cols;
}
// When the Cholesky factor succeeded, these methods are
// guaranteed to succeeded as well. In the comments below, "x"
// refers to the scratch space.
//
// Set x = P * b.
CHECK(cs_di_ipvec(symbolic_factor->pinv, b, scratch_, num_cols));
// Set x = L \ x.
CHECK(cs_di_lsolve(numeric_factor->L, scratch_));
// Set x = L' \ x.
CHECK(cs_di_ltsolve(numeric_factor->L, scratch_));
// Set b = P' * x.
CHECK(cs_di_pvec(symbolic_factor->pinv, scratch_, b, num_cols));
}
bool CXSparse::SolveCholesky(cs_di* lhs, double* rhs_and_solution) {
return cs_cholsol(1, lhs, rhs_and_solution);
}
cs_dis* CXSparse::AnalyzeCholesky(cs_di* A) {
// order = 1 for Cholesky factor.
return cs_schol(1, A);
}
cs_dis* CXSparse::AnalyzeCholeskyWithNaturalOrdering(cs_di* A) {
// order = 0 for Natural ordering.
return cs_schol(0, A);
}
cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A,
const vector<int>& row_blocks,
const vector<int>& col_blocks) {
const int num_row_blocks = row_blocks.size();
const int num_col_blocks = col_blocks.size();
vector<int> block_rows;
vector<int> block_cols;
CompressedColumnScalarMatrixToBlockMatrix(
A->i, A->p, row_blocks, col_blocks, &block_rows, &block_cols);
cs_di block_matrix;
block_matrix.m = num_row_blocks;
block_matrix.n = num_col_blocks;
block_matrix.nz = -1;
block_matrix.nzmax = block_rows.size();
block_matrix.p = &block_cols[0];
block_matrix.i = &block_rows[0];
block_matrix.x = nullptr;
int* ordering = cs_amd(1, &block_matrix);
vector<int> block_ordering(num_row_blocks, -1);
std::copy(ordering, ordering + num_row_blocks, &block_ordering[0]);
cs_free(ordering);
vector<int> scalar_ordering;
BlockOrderingToScalarOrdering(row_blocks, block_ordering, &scalar_ordering);
auto* symbolic_factor =
reinterpret_cast<cs_dis*>(cs_calloc(1, sizeof(cs_dis)));
symbolic_factor->pinv = cs_pinv(&scalar_ordering[0], A->n);
cs* permuted_A = cs_symperm(A, symbolic_factor->pinv, 0);
symbolic_factor->parent = cs_etree(permuted_A, 0);
int* postordering = cs_post(symbolic_factor->parent, A->n);
int* column_counts =
cs_counts(permuted_A, symbolic_factor->parent, postordering, 0);
cs_free(postordering);
cs_spfree(permuted_A);
symbolic_factor->cp = static_cast<int*>(cs_malloc(A->n + 1, sizeof(int)));
symbolic_factor->lnz = cs_cumsum(symbolic_factor->cp, column_counts, A->n);
symbolic_factor->unz = symbolic_factor->lnz;
cs_free(column_counts);
if (symbolic_factor->lnz < 0) {
cs_sfree(symbolic_factor);
symbolic_factor = nullptr;
}
return symbolic_factor;
}
cs_di CXSparse::CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A) {
cs_di At;
At.m = A->num_cols();
At.n = A->num_rows();
At.nz = -1;
At.nzmax = A->num_nonzeros();
At.p = A->mutable_rows();
At.i = A->mutable_cols();
At.x = A->mutable_values();
return At;
}
cs_di* CXSparse::CreateSparseMatrix(TripletSparseMatrix* tsm) {
cs_di_sparse tsm_wrapper;
tsm_wrapper.nzmax = tsm->num_nonzeros();
tsm_wrapper.nz = tsm->num_nonzeros();
tsm_wrapper.m = tsm->num_rows();
tsm_wrapper.n = tsm->num_cols();
tsm_wrapper.p = tsm->mutable_cols();
tsm_wrapper.i = tsm->mutable_rows();
tsm_wrapper.x = tsm->mutable_values();
return cs_compress(&tsm_wrapper);
}
void CXSparse::ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering) {
int* cs_ordering = cs_amd(1, A);
std::copy(cs_ordering, cs_ordering + A->m, ordering);
cs_free(cs_ordering);
}
cs_di* CXSparse::TransposeMatrix(cs_di* A) { return cs_di_transpose(A, 1); }
cs_di* CXSparse::MatrixMatrixMultiply(cs_di* A, cs_di* B) {
return cs_di_multiply(A, B);
}
void CXSparse::Free(cs_di* sparse_matrix) { cs_di_spfree(sparse_matrix); }
void CXSparse::Free(cs_dis* symbolic_factor) { cs_di_sfree(symbolic_factor); }
void CXSparse::Free(csn* numeric_factor) { cs_di_nfree(numeric_factor); }
std::unique_ptr<SparseCholesky> CXSparseCholesky::Create(
const OrderingType ordering_type) {
return std::unique_ptr<SparseCholesky>(new CXSparseCholesky(ordering_type));
}
CompressedRowSparseMatrix::StorageType CXSparseCholesky::StorageType() const {
return CompressedRowSparseMatrix::LOWER_TRIANGULAR;
}
CXSparseCholesky::CXSparseCholesky(const OrderingType ordering_type)
: ordering_type_(ordering_type),
symbolic_factor_(nullptr),
numeric_factor_(nullptr) {}
CXSparseCholesky::~CXSparseCholesky() {
FreeSymbolicFactorization();
FreeNumericFactorization();
}
LinearSolverTerminationType CXSparseCholesky::Factorize(
CompressedRowSparseMatrix* lhs, std::string* message) {
CHECK_EQ(lhs->storage_type(), StorageType());
if (lhs == nullptr) {
*message = "Failure: Input lhs is nullptr.";
return LINEAR_SOLVER_FATAL_ERROR;
}
cs_di cs_lhs = cs_.CreateSparseMatrixTransposeView(lhs);
if (symbolic_factor_ == nullptr) {
if (ordering_type_ == NATURAL) {
symbolic_factor_ = cs_.AnalyzeCholeskyWithNaturalOrdering(&cs_lhs);
} else {
if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) {
symbolic_factor_ = cs_.BlockAnalyzeCholesky(
&cs_lhs, lhs->col_blocks(), lhs->row_blocks());
} else {
symbolic_factor_ = cs_.AnalyzeCholesky(&cs_lhs);
}
}
if (symbolic_factor_ == nullptr) {
*message = "CXSparse Failure : Symbolic factorization failed.";
return LINEAR_SOLVER_FATAL_ERROR;
}
}
FreeNumericFactorization();
numeric_factor_ = cs_.Cholesky(&cs_lhs, symbolic_factor_);
if (numeric_factor_ == nullptr) {
*message = "CXSparse Failure : Numeric factorization failed.";
return LINEAR_SOLVER_FAILURE;
}
return LINEAR_SOLVER_SUCCESS;
}
LinearSolverTerminationType CXSparseCholesky::Solve(const double* rhs,
double* solution,
std::string* message) {
CHECK(numeric_factor_ != nullptr)
<< "Solve called without a call to Factorize first.";
const int num_cols = numeric_factor_->L->n;
memcpy(solution, rhs, num_cols * sizeof(*solution));
cs_.Solve(symbolic_factor_, numeric_factor_, solution);
return LINEAR_SOLVER_SUCCESS;
}
void CXSparseCholesky::FreeSymbolicFactorization() {
if (symbolic_factor_ != nullptr) {
cs_.Free(symbolic_factor_);
symbolic_factor_ = nullptr;
}
}
void CXSparseCholesky::FreeNumericFactorization() {
if (numeric_factor_ != nullptr) {
cs_.Free(numeric_factor_);
numeric_factor_ = nullptr;
}
}
} // namespace internal
} // namespace ceres
#endif // CERES_NO_CXSPARSE
|