File: dense_linear_solver_test.cc

package info (click to toggle)
ceres-solver 2.1.0%2Breally2.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,656 kB
  • sloc: cpp: 80,895; ansic: 2,869; python: 679; sh: 78; makefile: 74; xml: 21
file content (140 lines) | stat: -rw-r--r-- 5,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2017 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#include <memory>

#include "ceres/casts.h"
#include "ceres/context_impl.h"
#include "ceres/internal/config.h"
#include "ceres/linear_least_squares_problems.h"
#include "ceres/linear_solver.h"
#include "ceres/triplet_sparse_matrix.h"
#include "ceres/types.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

namespace ceres {
namespace internal {

using Param = ::testing::
    tuple<LinearSolverType, DenseLinearAlgebraLibraryType, bool, int>;

static std::string ParamInfoToString(testing::TestParamInfo<Param> info) {
  Param param = info.param;
  std::stringstream ss;
  ss << LinearSolverTypeToString(::testing::get<0>(param)) << "_"
     << DenseLinearAlgebraLibraryTypeToString(::testing::get<1>(param)) << "_"
     << (::testing::get<2>(param) ? "Regularized" : "Unregularized") << "_"
     << ::testing::get<3>(param);
  return ss.str();
}

class DenseLinearSolverTest : public ::testing::TestWithParam<Param> {};

TEST_P(DenseLinearSolverTest, _) {
  Param param = GetParam();
  const bool regularized = testing::get<2>(param);

  std::unique_ptr<LinearLeastSquaresProblem> problem =
      CreateLinearLeastSquaresProblemFromId(testing::get<3>(param));
  DenseSparseMatrix lhs(*down_cast<TripletSparseMatrix*>(problem->A.get()));

  const int num_cols = lhs.num_cols();
  const int num_rows = lhs.num_rows();

  Vector rhs = Vector::Zero(num_rows + num_cols);
  rhs.head(num_rows) = ConstVectorRef(problem->b.get(), num_rows);

  LinearSolver::Options options;
  options.type = ::testing::get<0>(param);
  options.dense_linear_algebra_library_type = ::testing::get<1>(param);
  ContextImpl context;
  options.context = &context;
  std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options));

  LinearSolver::PerSolveOptions per_solve_options;
  if (regularized) {
    per_solve_options.D = problem->D.get();
  }

  Vector solution(num_cols);
  LinearSolver::Summary summary =
      solver->Solve(&lhs, rhs.data(), per_solve_options, solution.data());
  EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_SUCCESS);

  Vector normal_rhs = lhs.matrix().transpose() * rhs.head(num_rows);
  Matrix normal_lhs = lhs.matrix().transpose() * lhs.matrix();

  if (regularized) {
    ConstVectorRef diagonal(problem->D.get(), num_cols);
    normal_lhs += diagonal.array().square().matrix().asDiagonal();
  }

  Vector actual_normal_rhs = normal_lhs * solution;

  const double normalized_residual =
      (normal_rhs - actual_normal_rhs).norm() / normal_rhs.norm();

  EXPECT_NEAR(
      normalized_residual, 0.0, 10 * std::numeric_limits<double>::epsilon())
      << "\nexpected: " << normal_rhs.transpose()
      << "\nactual: " << actual_normal_rhs.transpose();
}

namespace {

// TODO(sameeragarwal): Should we move away from hard coded linear
// least squares problem to randomly generated ones?
#ifndef CERES_NO_LAPACK

INSTANTIATE_TEST_SUITE_P(
    DenseLinearSolver,
    DenseLinearSolverTest,
    ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY),
                       ::testing::Values(EIGEN, LAPACK),
                       ::testing::Values(true, false),
                       ::testing::Values(0, 1)),
    ParamInfoToString);

#else

INSTANTIATE_TEST_SUITE_P(
    DenseLinearSolver,
    DenseLinearSolverTest,
    ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY),
                       ::testing::Values(EIGEN),
                       ::testing::Values(true, false),
                       ::testing::Values(0, 1)),
    ParamInfoToString);

#endif
}  // namespace
}  // namespace internal
}  // namespace ceres