1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// TODO(keir): Implement a generic "compare sparse matrix implementations" test
// suite that can compare all the implementations. Then this file would shrink
// in size.
#include "ceres/dense_sparse_matrix.h"
#include <memory>
#include "ceres/casts.h"
#include "ceres/internal/eigen.h"
#include "ceres/linear_least_squares_problems.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
static void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {
EXPECT_EQ(a->num_rows(), b->num_rows());
EXPECT_EQ(a->num_cols(), b->num_cols());
int num_rows = a->num_rows();
int num_cols = a->num_cols();
for (int i = 0; i < num_cols; ++i) {
Vector x = Vector::Zero(num_cols);
x(i) = 1.0;
Vector y_a = Vector::Zero(num_rows);
Vector y_b = Vector::Zero(num_rows);
a->RightMultiply(x.data(), y_a.data());
b->RightMultiply(x.data(), y_b.data());
EXPECT_EQ((y_a - y_b).norm(), 0);
}
}
class DenseSparseMatrixTest : public ::testing::Test {
protected:
void SetUp() final {
std::unique_ptr<LinearLeastSquaresProblem> problem =
CreateLinearLeastSquaresProblemFromId(1);
CHECK(problem != nullptr);
tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
dsm = std::make_unique<DenseSparseMatrix>(*tsm);
num_rows = tsm->num_rows();
num_cols = tsm->num_cols();
}
int num_rows;
int num_cols;
std::unique_ptr<TripletSparseMatrix> tsm;
std::unique_ptr<DenseSparseMatrix> dsm;
};
TEST_F(DenseSparseMatrixTest, RightMultiply) {
CompareMatrices(tsm.get(), dsm.get());
// Try with a not entirely zero vector to verify column interactions, which
// could be masked by a subtle bug when using the elementary vectors.
Vector a(num_cols);
for (int i = 0; i < num_cols; i++) {
a(i) = i;
}
Vector b1 = Vector::Zero(num_rows);
Vector b2 = Vector::Zero(num_rows);
tsm->RightMultiply(a.data(), b1.data());
dsm->RightMultiply(a.data(), b2.data());
EXPECT_EQ((b1 - b2).norm(), 0);
}
TEST_F(DenseSparseMatrixTest, LeftMultiply) {
for (int i = 0; i < num_rows; ++i) {
Vector a = Vector::Zero(num_rows);
a(i) = 1.0;
Vector b1 = Vector::Zero(num_cols);
Vector b2 = Vector::Zero(num_cols);
tsm->LeftMultiply(a.data(), b1.data());
dsm->LeftMultiply(a.data(), b2.data());
EXPECT_EQ((b1 - b2).norm(), 0);
}
// Try with a not entirely zero vector to verify column interactions, which
// could be masked by a subtle bug when using the elementary vectors.
Vector a(num_rows);
for (int i = 0; i < num_rows; i++) {
a(i) = i;
}
Vector b1 = Vector::Zero(num_cols);
Vector b2 = Vector::Zero(num_cols);
tsm->LeftMultiply(a.data(), b1.data());
dsm->LeftMultiply(a.data(), b2.data());
EXPECT_EQ((b1 - b2).norm(), 0);
}
TEST_F(DenseSparseMatrixTest, ColumnNorm) {
Vector b1 = Vector::Zero(num_cols);
Vector b2 = Vector::Zero(num_cols);
tsm->SquaredColumnNorm(b1.data());
dsm->SquaredColumnNorm(b2.data());
EXPECT_EQ((b1 - b2).norm(), 0);
}
TEST_F(DenseSparseMatrixTest, Scale) {
Vector scale(num_cols);
for (int i = 0; i < num_cols; ++i) {
scale(i) = i + 1;
}
tsm->ScaleColumns(scale.data());
dsm->ScaleColumns(scale.data());
CompareMatrices(tsm.get(), dsm.get());
}
TEST_F(DenseSparseMatrixTest, ToDenseMatrix) {
Matrix tsm_dense;
Matrix dsm_dense;
tsm->ToDenseMatrix(&tsm_dense);
dsm->ToDenseMatrix(&dsm_dense);
EXPECT_EQ((tsm_dense - dsm_dense).norm(), 0.0);
}
} // namespace internal
} // namespace ceres
|