1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/dogleg_strategy.h"
#include <algorithm>
#include <cmath>
#include "Eigen/Dense"
#include "ceres/array_utils.h"
#include "ceres/internal/eigen.h"
#include "ceres/linear_least_squares_problems.h"
#include "ceres/linear_solver.h"
#include "ceres/polynomial.h"
#include "ceres/sparse_matrix.h"
#include "ceres/trust_region_strategy.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
namespace {
const double kMaxMu = 1.0;
const double kMinMu = 1e-8;
} // namespace
DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
: linear_solver_(options.linear_solver),
radius_(options.initial_radius),
max_radius_(options.max_radius),
min_diagonal_(options.min_lm_diagonal),
max_diagonal_(options.max_lm_diagonal),
mu_(kMinMu),
min_mu_(kMinMu),
max_mu_(kMaxMu),
mu_increase_factor_(10.0),
increase_threshold_(0.75),
decrease_threshold_(0.25),
dogleg_step_norm_(0.0),
reuse_(false),
dogleg_type_(options.dogleg_type) {
CHECK(linear_solver_ != nullptr);
CHECK_GT(min_diagonal_, 0.0);
CHECK_LE(min_diagonal_, max_diagonal_);
CHECK_GT(max_radius_, 0.0);
}
// If the reuse_ flag is not set, then the Cauchy point (scaled
// gradient) and the new Gauss-Newton step are computed from
// scratch. The Dogleg step is then computed as interpolation of these
// two vectors.
TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
const TrustRegionStrategy::PerSolveOptions& per_solve_options,
SparseMatrix* jacobian,
const double* residuals,
double* step) {
CHECK(jacobian != nullptr);
CHECK(residuals != nullptr);
CHECK(step != nullptr);
const int n = jacobian->num_cols();
if (reuse_) {
// Gauss-Newton and gradient vectors are always available, only a
// new interpolant need to be computed. For the subspace case,
// the subspace and the two-dimensional model are also still valid.
switch (dogleg_type_) {
case TRADITIONAL_DOGLEG:
ComputeTraditionalDoglegStep(step);
break;
case SUBSPACE_DOGLEG:
ComputeSubspaceDoglegStep(step);
break;
}
TrustRegionStrategy::Summary summary;
summary.num_iterations = 0;
summary.termination_type = LINEAR_SOLVER_SUCCESS;
return summary;
}
reuse_ = true;
// Check that we have the storage needed to hold the various
// temporary vectors.
if (diagonal_.rows() != n) {
diagonal_.resize(n, 1);
gradient_.resize(n, 1);
gauss_newton_step_.resize(n, 1);
}
// Vector used to form the diagonal matrix that is used to
// regularize the Gauss-Newton solve and that defines the
// elliptical trust region
//
// || D * step || <= radius_ .
//
jacobian->SquaredColumnNorm(diagonal_.data());
for (int i = 0; i < n; ++i) {
diagonal_[i] =
std::min(std::max(diagonal_[i], min_diagonal_), max_diagonal_);
}
diagonal_ = diagonal_.array().sqrt();
ComputeGradient(jacobian, residuals);
ComputeCauchyPoint(jacobian);
LinearSolver::Summary linear_solver_summary =
ComputeGaussNewtonStep(per_solve_options, jacobian, residuals);
TrustRegionStrategy::Summary summary;
summary.residual_norm = linear_solver_summary.residual_norm;
summary.num_iterations = linear_solver_summary.num_iterations;
summary.termination_type = linear_solver_summary.termination_type;
if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
return summary;
}
if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
switch (dogleg_type_) {
// Interpolate the Cauchy point and the Gauss-Newton step.
case TRADITIONAL_DOGLEG:
ComputeTraditionalDoglegStep(step);
break;
// Find the minimum in the subspace defined by the
// Cauchy point and the (Gauss-)Newton step.
case SUBSPACE_DOGLEG:
if (!ComputeSubspaceModel(jacobian)) {
summary.termination_type = LINEAR_SOLVER_FAILURE;
break;
}
ComputeSubspaceDoglegStep(step);
break;
}
}
return summary;
}
// The trust region is assumed to be elliptical with the
// diagonal scaling matrix D defined by sqrt(diagonal_).
// It is implemented by substituting step' = D * step.
// The trust region for step' is spherical.
// The gradient, the Gauss-Newton step, the Cauchy point,
// and all calculations involving the Jacobian have to
// be adjusted accordingly.
void DoglegStrategy::ComputeGradient(SparseMatrix* jacobian,
const double* residuals) {
gradient_.setZero();
jacobian->LeftMultiply(residuals, gradient_.data());
gradient_.array() /= diagonal_.array();
}
// The Cauchy point is the global minimizer of the quadratic model
// along the one-dimensional subspace spanned by the gradient.
void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
// alpha * -gradient is the Cauchy point.
Vector Jg(jacobian->num_rows());
Jg.setZero();
// The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
// instead of (J * D^-1) * (D^-1 * g).
Vector scaled_gradient = (gradient_.array() / diagonal_.array()).matrix();
jacobian->RightMultiply(scaled_gradient.data(), Jg.data());
alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
}
// The dogleg step is defined as the intersection of the trust region
// boundary with the piecewise linear path from the origin to the Cauchy
// point and then from there to the Gauss-Newton point (global minimizer
// of the model function). The Gauss-Newton point is taken if it lies
// within the trust region.
void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
VectorRef dogleg_step(dogleg, gradient_.rows());
// Case 1. The Gauss-Newton step lies inside the trust region, and
// is therefore the optimal solution to the trust-region problem.
const double gradient_norm = gradient_.norm();
const double gauss_newton_norm = gauss_newton_step_.norm();
if (gauss_newton_norm <= radius_) {
dogleg_step = gauss_newton_step_;
dogleg_step_norm_ = gauss_newton_norm;
dogleg_step.array() /= diagonal_.array();
VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
<< " radius: " << radius_;
return;
}
// Case 2. The Cauchy point and the Gauss-Newton steps lie outside
// the trust region. Rescale the Cauchy point to the trust region
// and return.
if (gradient_norm * alpha_ >= radius_) {
dogleg_step = -(radius_ / gradient_norm) * gradient_;
dogleg_step_norm_ = radius_;
dogleg_step.array() /= diagonal_.array();
VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
<< " radius: " << radius_;
return;
}
// Case 3. The Cauchy point is inside the trust region and the
// Gauss-Newton step is outside. Compute the line joining the two
// points and the point on it which intersects the trust region
// boundary.
// a = alpha * -gradient
// b = gauss_newton_step
const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
const double b_minus_a_squared_norm =
a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);
// c = a' (b - a)
// = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
const double c = b_dot_a - a_squared_norm;
const double d = sqrt(c * c + b_minus_a_squared_norm *
(pow(radius_, 2.0) - a_squared_norm));
double beta = (c <= 0) ? (d - c) / b_minus_a_squared_norm
: (radius_ * radius_ - a_squared_norm) / (d + c);
dogleg_step =
(-alpha_ * (1.0 - beta)) * gradient_ + beta * gauss_newton_step_;
dogleg_step_norm_ = dogleg_step.norm();
dogleg_step.array() /= diagonal_.array();
VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
<< " radius: " << radius_;
}
// The subspace method finds the minimum of the two-dimensional problem
//
// min. 1/2 x' B' H B x + g' B x
// s.t. || B x ||^2 <= r^2
//
// where r is the trust region radius and B is the matrix with unit columns
// spanning the subspace defined by the steepest descent and Newton direction.
// This subspace by definition includes the Gauss-Newton point, which is
// therefore taken if it lies within the trust region.
void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
VectorRef dogleg_step(dogleg, gradient_.rows());
// The Gauss-Newton point is inside the trust region if |GN| <= radius_.
// This test is valid even though radius_ is a length in the two-dimensional
// subspace while gauss_newton_step_ is expressed in the (scaled)
// higher dimensional original space. This is because
//
// 1. gauss_newton_step_ by definition lies in the subspace, and
// 2. the subspace basis is orthonormal.
//
// As a consequence, the norm of the gauss_newton_step_ in the subspace is
// the same as its norm in the original space.
const double gauss_newton_norm = gauss_newton_step_.norm();
if (gauss_newton_norm <= radius_) {
dogleg_step = gauss_newton_step_;
dogleg_step_norm_ = gauss_newton_norm;
dogleg_step.array() /= diagonal_.array();
VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
<< " radius: " << radius_;
return;
}
// The optimum lies on the boundary of the trust region. The above problem
// therefore becomes
//
// min. 1/2 x^T B^T H B x + g^T B x
// s.t. || B x ||^2 = r^2
//
// Notice the equality in the constraint.
//
// This can be solved by forming the Lagrangian, solving for x(y), where
// y is the Lagrange multiplier, using the gradient of the objective, and
// putting x(y) back into the constraint. This results in a fourth order
// polynomial in y, which can be solved using e.g. the companion matrix.
// See the description of MakePolynomialForBoundaryConstrainedProblem for
// details. The result is up to four real roots y*, not all of which
// correspond to feasible points. The feasible points x(y*) have to be
// tested for optimality.
if (subspace_is_one_dimensional_) {
// The subspace is one-dimensional, so both the gradient and
// the Gauss-Newton step point towards the same direction.
// In this case, we move along the gradient until we reach the trust
// region boundary.
dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
dogleg_step_norm_ = radius_;
dogleg_step.array() /= diagonal_.array();
VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
<< " radius: " << radius_;
return;
}
Vector2d minimum(0.0, 0.0);
if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
// For the positive semi-definite case, a traditional dogleg step
// is taken in this case.
LOG(WARNING) << "Failed to compute polynomial roots. "
<< "Taking traditional dogleg step instead.";
ComputeTraditionalDoglegStep(dogleg);
return;
}
// Test first order optimality at the minimum.
// The first order KKT conditions state that the minimum x*
// has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
// the trust region), or
//
// (B x* + g) + y x* = 0
//
// for some positive scalar y.
// Here, as it is already known that the minimum lies on the boundary, the
// latter condition is tested. To allow for small imprecisions, we test if
// the angle between (B x* + g) and -x* is smaller than acos(0.99).
// The exact value of the cosine is arbitrary but should be close to 1.
//
// This condition should not be violated. If it is, the minimum was not
// correctly determined.
const double kCosineThreshold = 0.99;
const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
const double cosine_angle =
-minimum.dot(grad_minimum) / (minimum.norm() * grad_minimum.norm());
if (cosine_angle < kCosineThreshold) {
LOG(WARNING) << "First order optimality seems to be violated "
<< "in the subspace method!\n"
<< "Cosine of angle between x and B x + g is " << cosine_angle
<< ".\n"
<< "Taking a regular dogleg step instead.\n"
<< "Please consider filing a bug report if this "
<< "happens frequently or consistently.\n";
ComputeTraditionalDoglegStep(dogleg);
return;
}
// Create the full step from the optimal 2d solution.
dogleg_step = subspace_basis_ * minimum;
dogleg_step_norm_ = radius_;
dogleg_step.array() /= diagonal_.array();
VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
<< " radius: " << radius_;
}
// Build the polynomial that defines the optimal Lagrange multipliers.
// Let the Lagrangian be
//
// L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2). (1)
//
// Stationary points of the Lagrangian are given by
//
// 0 = d L(x, y) / dx = Bx + g + y x (2)
// 0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2 (3)
//
// For any given y, we can solve (2) for x as
//
// x(y) = -(B + y I)^-1 g . (4)
//
// As B + y I is 2x2, we form the inverse explicitly:
//
// (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I) (5)
//
// where adj() denotes adjugation. This should be safe, as B is positive
// semi-definite and y is necessarily positive, so (B + y I) is indeed
// invertible.
// Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
// obtain
//
// 0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
// (6)
//
// or
//
// det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g (7a)
// = g^T adj(B)^T adj(B) g
// + 2 y g^T adj(B)^T g + y^2 g^T g (7b)
//
// as
//
// adj(B + y I) = adj(B) + y I = adj(B)^T + y I . (8)
//
// The left hand side can be expressed explicitly using
//
// det(B + y I) = det(B) + y tr(B) + y^2 . (9)
//
// So (7) is a polynomial in y of degree four.
// Bringing everything back to the left hand side, the coefficients can
// be read off as
//
// y^4 r^2
// + y^3 2 r^2 tr(B)
// + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
// + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
// + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
//
Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
const double detB = subspace_B_.determinant();
const double trB = subspace_B_.trace();
const double r2 = radius_ * radius_;
Matrix2d B_adj;
// clang-format off
B_adj << subspace_B_(1, 1) , -subspace_B_(0, 1),
-subspace_B_(1, 0) , subspace_B_(0, 0);
// clang-format on
Vector polynomial(5);
polynomial(0) = r2;
polynomial(1) = 2.0 * r2 * trB;
polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
polynomial(3) =
-2.0 * (subspace_g_.transpose() * B_adj * subspace_g_ - r2 * detB * trB);
polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
return polynomial;
}
// Given a Lagrange multiplier y that corresponds to a stationary point
// of the Lagrangian L(x, y), compute the corresponding x from the
// equation
//
// 0 = d L(x, y) / dx
// = B * x + g + y * x
// = (B + y * I) * x + g
//
DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
double y) const {
const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
return -B_i.partialPivLu().solve(subspace_g_);
}
// This function evaluates the quadratic model at a point x in the
// subspace spanned by subspace_basis_.
double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
}
// This function attempts to solve the boundary-constrained subspace problem
//
// min. 1/2 x^T B^T H B x + g^T B x
// s.t. || B x ||^2 = r^2
//
// where B is an orthonormal subspace basis and r is the trust-region radius.
//
// This is done by finding the roots of a fourth degree polynomial. If the
// root finding fails, the function returns false and minimum will be set
// to (0, 0). If it succeeds, true is returned.
//
// In the failure case, another step should be taken, such as the traditional
// dogleg step.
bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
CHECK(minimum != nullptr);
// Return (0, 0) in all error cases.
minimum->setZero();
// Create the fourth-degree polynomial that is a necessary condition for
// optimality.
const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();
// Find the real parts y_i of its roots (not only the real roots).
Vector roots_real;
if (!FindPolynomialRoots(polynomial, &roots_real, nullptr)) {
// Failed to find the roots of the polynomial, i.e. the candidate
// solutions of the constrained problem. Report this back to the caller.
return false;
}
// For each root y, compute B x(y) and check for feasibility.
// Notice that there should always be four roots, as the leading term of
// the polynomial is r^2 and therefore non-zero. However, as some roots
// may be complex, the real parts are not necessarily unique.
double minimum_value = std::numeric_limits<double>::max();
bool valid_root_found = false;
for (int i = 0; i < roots_real.size(); ++i) {
const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));
// Not all roots correspond to points on the trust region boundary.
// There are at most four candidate solutions. As we are interested
// in the minimum, it is safe to consider all of them after projecting
// them onto the trust region boundary.
if (x_i.norm() > 0) {
const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
valid_root_found = true;
if (f_i < minimum_value) {
minimum_value = f_i;
*minimum = x_i;
}
}
}
return valid_root_found;
}
LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
const PerSolveOptions& per_solve_options,
SparseMatrix* jacobian,
const double* residuals) {
const int n = jacobian->num_cols();
LinearSolver::Summary linear_solver_summary;
linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
// The Jacobian matrix is often quite poorly conditioned. Thus it is
// necessary to add a diagonal matrix at the bottom to prevent the
// linear solver from failing.
//
// We do this by computing the same diagonal matrix as the one used
// by Levenberg-Marquardt (other choices are possible), and scaling
// it by a small constant (independent of the trust region radius).
//
// If the solve fails, the multiplier to the diagonal is increased
// up to max_mu_ by a factor of mu_increase_factor_ every time. If
// the linear solver is still not successful, the strategy returns
// with LINEAR_SOLVER_FAILURE.
//
// Next time when a new Gauss-Newton step is requested, the
// multiplier starts out from the last successful solve.
//
// When a step is declared successful, the multiplier is decreased
// by half of mu_increase_factor_.
while (mu_ < max_mu_) {
// Dogleg, as far as I (sameeragarwal) understand it, requires a
// reasonably good estimate of the Gauss-Newton step. This means
// that we need to solve the normal equations more or less
// exactly. This is reflected in the values of the tolerances set
// below.
//
// For now, this strategy should only be used with exact
// factorization based solvers, for which these tolerances are
// automatically satisfied.
//
// The right way to combine inexact solves with trust region
// methods is to use Stiehaug's method.
LinearSolver::PerSolveOptions solve_options;
solve_options.q_tolerance = 0.0;
solve_options.r_tolerance = 0.0;
lm_diagonal_ = diagonal_ * std::sqrt(mu_);
solve_options.D = lm_diagonal_.data();
// As in the LevenbergMarquardtStrategy, solve Jy = r instead
// of Jx = -r and later set x = -y to avoid having to modify
// either jacobian or residuals.
InvalidateArray(n, gauss_newton_step_.data());
linear_solver_summary = linear_solver_->Solve(
jacobian, residuals, solve_options, gauss_newton_step_.data());
if (per_solve_options.dump_format_type == CONSOLE ||
(per_solve_options.dump_format_type != CONSOLE &&
!per_solve_options.dump_filename_base.empty())) {
if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base,
per_solve_options.dump_format_type,
jacobian,
solve_options.D,
residuals,
gauss_newton_step_.data(),
0)) {
LOG(ERROR) << "Unable to dump trust region problem."
<< " Filename base: "
<< per_solve_options.dump_filename_base;
}
}
if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
return linear_solver_summary;
}
if (linear_solver_summary.termination_type == LINEAR_SOLVER_FAILURE ||
!IsArrayValid(n, gauss_newton_step_.data())) {
mu_ *= mu_increase_factor_;
VLOG(2) << "Increasing mu " << mu_;
linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
continue;
}
break;
}
if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
// The scaled Gauss-Newton step is D * GN:
//
// - (D^-1 J^T J D^-1)^-1 (D^-1 g)
// = - D (J^T J)^-1 D D^-1 g
// = D -(J^T J)^-1 g
//
gauss_newton_step_.array() *= -diagonal_.array();
}
return linear_solver_summary;
}
void DoglegStrategy::StepAccepted(double step_quality) {
CHECK_GT(step_quality, 0.0);
if (step_quality < decrease_threshold_) {
radius_ *= 0.5;
}
if (step_quality > increase_threshold_) {
radius_ = std::max(radius_, 3.0 * dogleg_step_norm_);
}
// Reduce the regularization multiplier, in the hope that whatever
// was causing the rank deficiency has gone away and we can return
// to doing a pure Gauss-Newton solve.
mu_ = std::max(min_mu_, 2.0 * mu_ / mu_increase_factor_);
reuse_ = false;
}
void DoglegStrategy::StepRejected(double step_quality) {
radius_ *= 0.5;
reuse_ = true;
}
void DoglegStrategy::StepIsInvalid() {
mu_ *= mu_increase_factor_;
reuse_ = false;
}
double DoglegStrategy::Radius() const { return radius_; }
bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
// Compute an orthogonal basis for the subspace using QR decomposition.
Matrix basis_vectors(jacobian->num_cols(), 2);
basis_vectors.col(0) = gradient_;
basis_vectors.col(1) = gauss_newton_step_;
Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);
switch (basis_qr.rank()) {
case 0:
// This should never happen, as it implies that both the gradient
// and the Gauss-Newton step are zero. In this case, the minimizer should
// have stopped due to the gradient being too small.
LOG(ERROR) << "Rank of subspace basis is 0. "
<< "This means that the gradient at the current iterate is "
<< "zero but the optimization has not been terminated. "
<< "You may have found a bug in Ceres.";
return false;
case 1:
// Gradient and Gauss-Newton step coincide, so we lie on one of the
// major axes of the quadratic problem. In this case, we simply move
// along the gradient until we reach the trust region boundary.
subspace_is_one_dimensional_ = true;
return true;
case 2:
subspace_is_one_dimensional_ = false;
break;
default:
LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
<< "greater than 2. As the matrix contains only two "
<< "columns this cannot be true and is indicative of "
<< "a bug.";
return false;
}
// The subspace is two-dimensional, so compute the subspace model.
// Given the basis U, this is
//
// subspace_g_ = g_scaled^T U
//
// and
//
// subspace_B_ = U^T (J_scaled^T J_scaled) U
//
// As J_scaled = J * D^-1, the latter becomes
//
// subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
// = (J (D^-1 U))^T (J (D^-1 U))
subspace_basis_ =
basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);
subspace_g_ = subspace_basis_.transpose() * gradient_;
Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor> Jb(
2, jacobian->num_rows());
Jb.setZero();
Vector tmp;
tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
jacobian->RightMultiply(tmp.data(), Jb.row(0).data());
tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
jacobian->RightMultiply(tmp.data(), Jb.row(1).data());
subspace_B_ = Jb * Jb.transpose();
return true;
}
} // namespace internal
} // namespace ceres
|