1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: moll.markus@arcor.de (Markus Moll)
#include "ceres/dogleg_strategy.h"
#include <limits>
#include <memory>
#include "ceres/dense_qr_solver.h"
#include "ceres/internal/eigen.h"
#include "ceres/linear_solver.h"
#include "ceres/trust_region_strategy.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
namespace {
class Fixture : public testing::Test {
protected:
std::unique_ptr<DenseSparseMatrix> jacobian_;
Vector residual_;
Vector x_;
TrustRegionStrategy::Options options_;
};
// A test problem where
//
// J^T J = Q diag([1 2 4 8 16 32]) Q^T
//
// where Q is a randomly chosen orthonormal basis of R^6.
// The residual is chosen so that the minimum of the quadratic function is
// at (1, 1, 1, 1, 1, 1). It is therefore at a distance of sqrt(6) ~ 2.45
// from the origin.
class DoglegStrategyFixtureEllipse : public Fixture {
protected:
void SetUp() final {
Matrix basis(6, 6);
// The following lines exceed 80 characters for better readability.
// clang-format off
basis << -0.1046920933796121, -0.7449367449921986, -0.4190744502875876, -0.4480450716142566, 0.2375351607929440, -0.0363053418882862, // NOLINT
0.4064975684355914, 0.2681113508511354, -0.7463625494601520, -0.0803264850508117, -0.4463149623021321, 0.0130224954867195, // NOLINT
-0.5514387729089798, 0.1026621026168657, -0.5008316122125011, 0.5738122212666414, 0.2974664724007106, 0.1296020877535158, // NOLINT
0.5037835370947156, 0.2668479925183712, -0.1051754618492798, -0.0272739396578799, 0.7947481647088278, -0.1776623363955670, // NOLINT
-0.4005458426625444, 0.2939330589634109, -0.0682629380550051, -0.2895448882503687, -0.0457239396341685, -0.8139899477847840, // NOLINT
-0.3247764582762654, 0.4528151365941945, -0.0276683863102816, -0.6155994592510784, 0.1489240599972848, 0.5362574892189350; // NOLINT
// clang-format on
Vector Ddiag(6);
Ddiag << 1.0, 2.0, 4.0, 8.0, 16.0, 32.0;
Matrix sqrtD = Ddiag.array().sqrt().matrix().asDiagonal();
Matrix jacobian = sqrtD * basis;
jacobian_ = std::make_unique<DenseSparseMatrix>(jacobian);
Vector minimum(6);
minimum << 1.0, 1.0, 1.0, 1.0, 1.0, 1.0;
residual_ = -jacobian * minimum;
x_.resize(6);
x_.setZero();
options_.min_lm_diagonal = 1.0;
options_.max_lm_diagonal = 1.0;
}
};
// A test problem where
//
// J^T J = diag([1 2 4 8 16 32]) .
//
// The residual is chosen so that the minimum of the quadratic function is
// at (0, 0, 1, 0, 0, 0). It is therefore at a distance of 1 from the origin.
// The gradient at the origin points towards the global minimum.
class DoglegStrategyFixtureValley : public Fixture {
protected:
void SetUp() final {
Vector Ddiag(6);
Ddiag << 1.0, 2.0, 4.0, 8.0, 16.0, 32.0;
Matrix jacobian = Ddiag.asDiagonal();
jacobian_ = std::make_unique<DenseSparseMatrix>(jacobian);
Vector minimum(6);
minimum << 0.0, 0.0, 1.0, 0.0, 0.0, 0.0;
residual_ = -jacobian * minimum;
x_.resize(6);
x_.setZero();
options_.min_lm_diagonal = 1.0;
options_.max_lm_diagonal = 1.0;
}
};
const double kTolerance = 1e-14;
const double kToleranceLoose = 1e-5;
const double kEpsilon = std::numeric_limits<double>::epsilon();
} // namespace
// The DoglegStrategy must never return a step that is longer than the current
// trust region radius.
TEST_F(DoglegStrategyFixtureEllipse, TrustRegionObeyedTraditional) {
std::unique_ptr<LinearSolver> linear_solver(
new DenseQRSolver(LinearSolver::Options()));
options_.linear_solver = linear_solver.get();
// The global minimum is at (1, 1, ..., 1), so the distance to it is
// sqrt(6.0). By restricting the trust region to a radius of 2.0,
// we test if the trust region is actually obeyed.
options_.dogleg_type = TRADITIONAL_DOGLEG;
options_.initial_radius = 2.0;
options_.max_radius = 2.0;
DoglegStrategy strategy(options_);
TrustRegionStrategy::PerSolveOptions pso;
TrustRegionStrategy::Summary summary =
strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data());
EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon));
}
TEST_F(DoglegStrategyFixtureEllipse, TrustRegionObeyedSubspace) {
std::unique_ptr<LinearSolver> linear_solver(
new DenseQRSolver(LinearSolver::Options()));
options_.linear_solver = linear_solver.get();
options_.dogleg_type = SUBSPACE_DOGLEG;
options_.initial_radius = 2.0;
options_.max_radius = 2.0;
DoglegStrategy strategy(options_);
TrustRegionStrategy::PerSolveOptions pso;
TrustRegionStrategy::Summary summary =
strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data());
EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon));
}
TEST_F(DoglegStrategyFixtureEllipse, CorrectGaussNewtonStep) {
std::unique_ptr<LinearSolver> linear_solver(
new DenseQRSolver(LinearSolver::Options()));
options_.linear_solver = linear_solver.get();
options_.dogleg_type = SUBSPACE_DOGLEG;
options_.initial_radius = 10.0;
options_.max_radius = 10.0;
DoglegStrategy strategy(options_);
TrustRegionStrategy::PerSolveOptions pso;
TrustRegionStrategy::Summary summary =
strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data());
EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
EXPECT_NEAR(x_(0), 1.0, kToleranceLoose);
EXPECT_NEAR(x_(1), 1.0, kToleranceLoose);
EXPECT_NEAR(x_(2), 1.0, kToleranceLoose);
EXPECT_NEAR(x_(3), 1.0, kToleranceLoose);
EXPECT_NEAR(x_(4), 1.0, kToleranceLoose);
EXPECT_NEAR(x_(5), 1.0, kToleranceLoose);
}
// Test if the subspace basis is a valid orthonormal basis of the space spanned
// by the gradient and the Gauss-Newton point.
TEST_F(DoglegStrategyFixtureEllipse, ValidSubspaceBasis) {
std::unique_ptr<LinearSolver> linear_solver(
new DenseQRSolver(LinearSolver::Options()));
options_.linear_solver = linear_solver.get();
options_.dogleg_type = SUBSPACE_DOGLEG;
options_.initial_radius = 2.0;
options_.max_radius = 2.0;
DoglegStrategy strategy(options_);
TrustRegionStrategy::PerSolveOptions pso;
strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data());
// Check if the basis is orthonormal.
const Matrix basis = strategy.subspace_basis();
EXPECT_NEAR(basis.col(0).norm(), 1.0, kTolerance);
EXPECT_NEAR(basis.col(1).norm(), 1.0, kTolerance);
EXPECT_NEAR(basis.col(0).dot(basis.col(1)), 0.0, kTolerance);
// Check if the gradient projects onto itself.
const Vector gradient = strategy.gradient();
EXPECT_NEAR((gradient - basis * (basis.transpose() * gradient)).norm(),
0.0,
kTolerance);
// Check if the Gauss-Newton point projects onto itself.
const Vector gn = strategy.gauss_newton_step();
EXPECT_NEAR((gn - basis * (basis.transpose() * gn)).norm(), 0.0, kTolerance);
}
// Test if the step is correct if the gradient and the Gauss-Newton step point
// in the same direction and the Gauss-Newton step is outside the trust region,
// i.e. the trust region is active.
TEST_F(DoglegStrategyFixtureValley, CorrectStepLocalOptimumAlongGradient) {
std::unique_ptr<LinearSolver> linear_solver(
new DenseQRSolver(LinearSolver::Options()));
options_.linear_solver = linear_solver.get();
options_.dogleg_type = SUBSPACE_DOGLEG;
options_.initial_radius = 0.25;
options_.max_radius = 0.25;
DoglegStrategy strategy(options_);
TrustRegionStrategy::PerSolveOptions pso;
TrustRegionStrategy::Summary summary =
strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data());
EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
EXPECT_NEAR(x_(0), 0.0, kToleranceLoose);
EXPECT_NEAR(x_(1), 0.0, kToleranceLoose);
EXPECT_NEAR(x_(2), options_.initial_radius, kToleranceLoose);
EXPECT_NEAR(x_(3), 0.0, kToleranceLoose);
EXPECT_NEAR(x_(4), 0.0, kToleranceLoose);
EXPECT_NEAR(x_(5), 0.0, kToleranceLoose);
}
// Test if the step is correct if the gradient and the Gauss-Newton step point
// in the same direction and the Gauss-Newton step is inside the trust region,
// i.e. the trust region is inactive.
TEST_F(DoglegStrategyFixtureValley, CorrectStepGlobalOptimumAlongGradient) {
std::unique_ptr<LinearSolver> linear_solver(
new DenseQRSolver(LinearSolver::Options()));
options_.linear_solver = linear_solver.get();
options_.dogleg_type = SUBSPACE_DOGLEG;
options_.initial_radius = 2.0;
options_.max_radius = 2.0;
DoglegStrategy strategy(options_);
TrustRegionStrategy::PerSolveOptions pso;
TrustRegionStrategy::Summary summary =
strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data());
EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
EXPECT_NEAR(x_(0), 0.0, kToleranceLoose);
EXPECT_NEAR(x_(1), 0.0, kToleranceLoose);
EXPECT_NEAR(x_(2), 1.0, kToleranceLoose);
EXPECT_NEAR(x_(3), 0.0, kToleranceLoose);
EXPECT_NEAR(x_(4), 0.0, kToleranceLoose);
EXPECT_NEAR(x_(5), 0.0, kToleranceLoose);
}
} // namespace internal
} // namespace ceres
|