1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
// keir@google.com (Keir Mierle)
#ifndef CERES_INTERNAL_EVALUATOR_H_
#define CERES_INTERNAL_EVALUATOR_H_
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "ceres/context_impl.h"
#include "ceres/execution_summary.h"
#include "ceres/internal/disable_warnings.h"
#include "ceres/internal/export.h"
#include "ceres/types.h"
namespace ceres {
struct CRSMatrix;
class EvaluationCallback;
namespace internal {
class Program;
class SparseMatrix;
// The Evaluator interface offers a way to interact with a least squares cost
// function that is useful for an optimizer that wants to minimize the least
// squares objective. This insulates the optimizer from issues like Jacobian
// storage, manifolds, etc.
class CERES_NO_EXPORT Evaluator {
public:
virtual ~Evaluator();
struct Options {
int num_threads = 1;
int num_eliminate_blocks = -1;
LinearSolverType linear_solver_type = DENSE_QR;
bool dynamic_sparsity = false;
ContextImpl* context = nullptr;
EvaluationCallback* evaluation_callback = nullptr;
};
static std::unique_ptr<Evaluator> Create(const Options& options,
Program* program,
std::string* error);
// Build and return a sparse matrix for storing and working with the Jacobian
// of the objective function. The jacobian has dimensions
// NumEffectiveParameters() by NumParameters(), and is typically extremely
// sparse. Since the sparsity pattern of the Jacobian remains constant over
// the lifetime of the optimization problem, this method is used to
// instantiate a SparseMatrix object with the appropriate sparsity structure
// (which can be an expensive operation) and then reused by the optimization
// algorithm and the various linear solvers.
//
// It is expected that the classes implementing this interface will be aware
// of their client's requirements for the kind of sparse matrix storage and
// layout that is needed for an efficient implementation. For example
// CompressedRowOptimizationProblem creates a compressed row representation of
// the jacobian for use with CHOLMOD, where as BlockOptimizationProblem
// creates a BlockSparseMatrix representation of the jacobian for use in the
// Schur complement based methods.
virtual std::unique_ptr<SparseMatrix> CreateJacobian() const = 0;
// Options struct to control Evaluator::Evaluate;
struct EvaluateOptions {
// If false, the loss function correction is not applied to the
// residual blocks.
bool apply_loss_function = true;
// If false, this evaluation point is the same as the last one.
bool new_evaluation_point = true;
};
// Evaluate the cost function for the given state. Returns the cost,
// residuals, and jacobian in the corresponding arguments. Both residuals and
// jacobian are optional; to avoid computing them, pass nullptr.
//
// If non-nullptr, the Jacobian must have a suitable sparsity pattern; only
// the values array of the jacobian is modified.
//
// state is an array of size NumParameters(), cost is a pointer to a single
// double, and residuals is an array of doubles of size NumResiduals().
virtual bool Evaluate(const EvaluateOptions& evaluate_options,
const double* state,
double* cost,
double* residuals,
double* gradient,
SparseMatrix* jacobian) = 0;
// Variant of Evaluator::Evaluate where the user wishes to use the
// default EvaluateOptions struct. This is mostly here as a
// convenience method.
bool Evaluate(const double* state,
double* cost,
double* residuals,
double* gradient,
SparseMatrix* jacobian) {
return Evaluate(
EvaluateOptions(), state, cost, residuals, gradient, jacobian);
}
// Make a change delta (of size NumEffectiveParameters()) to state (of size
// NumParameters()) and store the result in state_plus_delta.
//
// In the case that there are no manifolds used, this is equivalent to
//
// state_plus_delta[i] = state[i] + delta[i] ;
//
// however, the mapping is more complicated in the case of manifolds
// like quaternions. This is the same as the "Plus()" operation in
// manifold.h, but operating over the entire state vector for a
// problem.
virtual bool Plus(const double* state,
const double* delta,
double* state_plus_delta) const = 0;
// The number of parameters in the optimization problem.
virtual int NumParameters() const = 0;
// This is the effective number of parameters that the optimizer may adjust.
// This applies when there are manifolds on some of the parameters.
virtual int NumEffectiveParameters() const = 0;
// The number of residuals in the optimization problem.
virtual int NumResiduals() const = 0;
// The following two methods return copies instead of references so
// that the base class implementation does not have to worry about
// life time issues. Further, these calls are not expected to be
// frequent or performance sensitive.
virtual std::map<std::string, CallStatistics> Statistics() const {
return {};
}
};
} // namespace internal
} // namespace ceres
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_INTERNAL_EVALUATOR_H_
|