1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Authors: keir@google.com (Keir Mierle),
// dgossow@google.com (David Gossow)
#include "ceres/gradient_checking_cost_function.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <memory>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "ceres/dynamic_numeric_diff_cost_function.h"
#include "ceres/gradient_checker.h"
#include "ceres/internal/eigen.h"
#include "ceres/parameter_block.h"
#include "ceres/problem.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/stringprintf.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
using std::abs;
using std::max;
using std::string;
using std::vector;
namespace {
class GradientCheckingCostFunction final : public CostFunction {
public:
GradientCheckingCostFunction(const CostFunction* function,
const std::vector<const Manifold*>* manifolds,
const NumericDiffOptions& options,
double relative_precision,
string extra_info,
GradientCheckingIterationCallback* callback)
: function_(function),
gradient_checker_(function, manifolds, options),
relative_precision_(relative_precision),
extra_info_(std::move(extra_info)),
callback_(callback) {
CHECK(callback_ != nullptr);
const vector<int32_t>& parameter_block_sizes =
function->parameter_block_sizes();
*mutable_parameter_block_sizes() = parameter_block_sizes;
set_num_residuals(function->num_residuals());
}
bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const final {
if (!jacobians) {
// Nothing to check in this case; just forward.
return function_->Evaluate(parameters, residuals, nullptr);
}
GradientChecker::ProbeResults results;
bool okay =
gradient_checker_.Probe(parameters, relative_precision_, &results);
// If the cost function returned false, there's nothing we can say about
// the gradients.
if (results.return_value == false) {
return false;
}
// Copy the residuals.
const int num_residuals = function_->num_residuals();
MatrixRef(residuals, num_residuals, 1) = results.residuals;
// Copy the original jacobian blocks into the jacobians array.
const vector<int32_t>& block_sizes = function_->parameter_block_sizes();
for (int k = 0; k < block_sizes.size(); k++) {
if (jacobians[k] != nullptr) {
MatrixRef(jacobians[k],
results.jacobians[k].rows(),
results.jacobians[k].cols()) = results.jacobians[k];
}
}
if (!okay) {
std::string error_log =
"Gradient Error detected!\nExtra info for this residual: " +
extra_info_ + "\n" + results.error_log;
callback_->SetGradientErrorDetected(error_log);
}
return true;
}
private:
const CostFunction* function_;
GradientChecker gradient_checker_;
double relative_precision_;
string extra_info_;
GradientCheckingIterationCallback* callback_;
};
} // namespace
GradientCheckingIterationCallback::GradientCheckingIterationCallback()
: gradient_error_detected_(false) {}
CallbackReturnType GradientCheckingIterationCallback::operator()(
const IterationSummary& summary) {
if (gradient_error_detected_) {
LOG(ERROR) << "Gradient error detected. Terminating solver.";
return SOLVER_ABORT;
}
return SOLVER_CONTINUE;
}
void GradientCheckingIterationCallback::SetGradientErrorDetected(
std::string& error_log) {
std::lock_guard<std::mutex> l(mutex_);
gradient_error_detected_ = true;
error_log_ += "\n" + error_log;
}
std::unique_ptr<CostFunction> CreateGradientCheckingCostFunction(
const CostFunction* cost_function,
const std::vector<const Manifold*>* manifolds,
double relative_step_size,
double relative_precision,
const std::string& extra_info,
GradientCheckingIterationCallback* callback) {
NumericDiffOptions numeric_diff_options;
numeric_diff_options.relative_step_size = relative_step_size;
return std::make_unique<GradientCheckingCostFunction>(cost_function,
manifolds,
numeric_diff_options,
relative_precision,
extra_info,
callback);
}
std::unique_ptr<ProblemImpl> CreateGradientCheckingProblemImpl(
ProblemImpl* problem_impl,
double relative_step_size,
double relative_precision,
GradientCheckingIterationCallback* callback) {
CHECK(callback != nullptr);
// We create new CostFunctions by wrapping the original CostFunction in a
// gradient checking CostFunction. So its okay for the ProblemImpl to take
// ownership of it and destroy it. The LossFunctions and Manifolds are reused
// and since they are owned by problem_impl, gradient_checking_problem_impl
// should not take ownership of it.
Problem::Options gradient_checking_problem_options;
gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP;
gradient_checking_problem_options.loss_function_ownership =
DO_NOT_TAKE_OWNERSHIP;
gradient_checking_problem_options.manifold_ownership = DO_NOT_TAKE_OWNERSHIP;
gradient_checking_problem_options.context = problem_impl->context();
NumericDiffOptions numeric_diff_options;
numeric_diff_options.relative_step_size = relative_step_size;
auto gradient_checking_problem_impl =
std::make_unique<ProblemImpl>(gradient_checking_problem_options);
Program* program = problem_impl->mutable_program();
// For every ParameterBlock in problem_impl, create a new parameter block with
// the same manifold and constancy.
const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
for (auto* parameter_block : parameter_blocks) {
gradient_checking_problem_impl->AddParameterBlock(
parameter_block->mutable_user_state(),
parameter_block->Size(),
parameter_block->mutable_manifold());
if (parameter_block->IsConstant()) {
gradient_checking_problem_impl->SetParameterBlockConstant(
parameter_block->mutable_user_state());
}
for (int i = 0; i < parameter_block->Size(); ++i) {
gradient_checking_problem_impl->SetParameterUpperBound(
parameter_block->mutable_user_state(),
i,
parameter_block->UpperBound(i));
gradient_checking_problem_impl->SetParameterLowerBound(
parameter_block->mutable_user_state(),
i,
parameter_block->LowerBound(i));
}
}
// For every ResidualBlock in problem_impl, create a new
// ResidualBlock by wrapping its CostFunction inside a
// GradientCheckingCostFunction.
const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
for (int i = 0; i < residual_blocks.size(); ++i) {
ResidualBlock* residual_block = residual_blocks[i];
// Build a human readable string which identifies the
// ResidualBlock. This is used by the GradientCheckingCostFunction
// when logging debugging information.
string extra_info =
StringPrintf("Residual block id %d; depends on parameters [", i);
vector<double*> parameter_blocks;
vector<const Manifold*> manifolds;
parameter_blocks.reserve(residual_block->NumParameterBlocks());
manifolds.reserve(residual_block->NumParameterBlocks());
for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
parameter_blocks.push_back(parameter_block->mutable_user_state());
StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state());
extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]";
manifolds.push_back(
problem_impl->GetManifold(parameter_block->mutable_user_state()));
}
// Wrap the original CostFunction in a GradientCheckingCostFunction.
CostFunction* gradient_checking_cost_function =
new GradientCheckingCostFunction(residual_block->cost_function(),
&manifolds,
numeric_diff_options,
relative_precision,
extra_info,
callback);
// The const_cast is necessary because
// ProblemImpl::AddResidualBlock can potentially take ownership of
// the LossFunction, but in this case we are guaranteed that this
// will not be the case, so this const_cast is harmless.
gradient_checking_problem_impl->AddResidualBlock(
gradient_checking_cost_function,
const_cast<LossFunction*>(residual_block->loss_function()),
parameter_blocks.data(),
static_cast<int>(parameter_blocks.size()));
}
// Normally, when a problem is given to the solver, we guarantee
// that the state pointers for each parameter block point to the
// user provided data. Since we are creating this new problem from a
// problem given to us at an arbitrary stage of the solve, we cannot
// depend on this being the case, so we explicitly call
// SetParameterBlockStatePtrsToUserStatePtrs to ensure that this is
// the case.
gradient_checking_problem_impl->mutable_program()
->SetParameterBlockStatePtrsToUserStatePtrs();
return gradient_checking_problem_impl;
}
} // namespace internal
} // namespace ceres
|