1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: strandmark@google.com (Petter Strandmark)
#include "ceres/gradient_problem_solver.h"
#include "ceres/gradient_problem.h"
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
// Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function .
class Rosenbrock : public ceres::FirstOrderFunction {
public:
bool Evaluate(const double* parameters,
double* cost,
double* gradient) const final {
const double x = parameters[0];
const double y = parameters[1];
cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
if (gradient != nullptr) {
gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
gradient[1] = 200.0 * (y - x * x);
}
return true;
}
int NumParameters() const final { return 2; }
};
TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) {
const double expected_tolerance = 1e-9;
double parameters[2] = {-1.2, 0.0};
ceres::GradientProblemSolver::Options options;
ceres::GradientProblemSolver::Summary summary;
ceres::GradientProblem problem(new Rosenbrock());
ceres::Solve(options, problem, parameters, &summary);
EXPECT_EQ(CONVERGENCE, summary.termination_type);
EXPECT_NEAR(1.0, parameters[0], expected_tolerance);
EXPECT_NEAR(1.0, parameters[1], expected_tolerance);
}
class QuadraticFunction : public ceres::FirstOrderFunction {
bool Evaluate(const double* parameters,
double* cost,
double* gradient) const final {
const double x = parameters[0];
*cost = 0.5 * (5.0 - x) * (5.0 - x);
if (gradient != nullptr) {
gradient[0] = x - 5.0;
}
return true;
}
int NumParameters() const final { return 1; }
};
struct RememberingCallback : public IterationCallback {
explicit RememberingCallback(double* x) : calls(0), x(x) {}
CallbackReturnType operator()(const IterationSummary& summary) final {
x_values.push_back(*x);
return SOLVER_CONTINUE;
}
int calls;
double* x;
std::vector<double> x_values;
};
TEST(Solver, UpdateStateEveryIterationOption) {
double x = 50.0;
const double original_x = x;
ceres::GradientProblem problem(new QuadraticFunction);
ceres::GradientProblemSolver::Options options;
RememberingCallback callback(&x);
options.callbacks.push_back(&callback);
ceres::GradientProblemSolver::Summary summary;
int num_iterations;
// First try: no updating.
ceres::Solve(options, problem, &x, &summary);
num_iterations = summary.iterations.size() - 1;
EXPECT_GT(num_iterations, 1);
for (double value : callback.x_values) {
EXPECT_EQ(50.0, value);
}
// Second try: with updating
x = 50.0;
options.update_state_every_iteration = true;
callback.x_values.clear();
ceres::Solve(options, problem, &x, &summary);
num_iterations = summary.iterations.size() - 1;
EXPECT_GT(num_iterations, 1);
EXPECT_EQ(original_x, callback.x_values[0]);
EXPECT_NE(original_x, callback.x_values[1]);
}
} // namespace internal
} // namespace ceres
|