1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// Various algorithms that operate on undirected graphs.
#ifndef CERES_INTERNAL_GRAPH_ALGORITHMS_H_
#define CERES_INTERNAL_GRAPH_ALGORITHMS_H_
#include <algorithm>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "ceres/graph.h"
#include "ceres/internal/export.h"
#include "ceres/wall_time.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
// Compare two vertices of a graph by their degrees, if the degrees
// are equal then order them by their ids.
template <typename Vertex>
class CERES_NO_EXPORT VertexTotalOrdering {
public:
explicit VertexTotalOrdering(const Graph<Vertex>& graph) : graph_(graph) {}
bool operator()(const Vertex& lhs, const Vertex& rhs) const {
if (graph_.Neighbors(lhs).size() == graph_.Neighbors(rhs).size()) {
return lhs < rhs;
}
return graph_.Neighbors(lhs).size() < graph_.Neighbors(rhs).size();
}
private:
const Graph<Vertex>& graph_;
};
template <typename Vertex>
class VertexDegreeLessThan {
public:
explicit VertexDegreeLessThan(const Graph<Vertex>& graph) : graph_(graph) {}
bool operator()(const Vertex& lhs, const Vertex& rhs) const {
return graph_.Neighbors(lhs).size() < graph_.Neighbors(rhs).size();
}
private:
const Graph<Vertex>& graph_;
};
// Order the vertices of a graph using its (approximately) largest
// independent set, where an independent set of a graph is a set of
// vertices that have no edges connecting them. The maximum
// independent set problem is NP-Hard, but there are effective
// approximation algorithms available. The implementation here uses a
// breadth first search that explores the vertices in order of
// increasing degree. The same idea is used by Saad & Li in "MIQR: A
// multilevel incomplete QR preconditioner for large sparse
// least-squares problems", SIMAX, 2007.
//
// Given a undirected graph G(V,E), the algorithm is a greedy BFS
// search where the vertices are explored in increasing order of their
// degree. The output vector ordering contains elements of S in
// increasing order of their degree, followed by elements of V - S in
// increasing order of degree. The return value of the function is the
// cardinality of S.
template <typename Vertex>
int IndependentSetOrdering(const Graph<Vertex>& graph,
std::vector<Vertex>* ordering) {
const std::unordered_set<Vertex>& vertices = graph.vertices();
const int num_vertices = vertices.size();
CHECK(ordering != nullptr);
ordering->clear();
ordering->reserve(num_vertices);
// Colors for labeling the graph during the BFS.
const char kWhite = 0;
const char kGrey = 1;
const char kBlack = 2;
// Mark all vertices white.
std::unordered_map<Vertex, char> vertex_color;
std::vector<Vertex> vertex_queue;
for (const Vertex& vertex : vertices) {
vertex_color[vertex] = kWhite;
vertex_queue.push_back(vertex);
}
std::sort(vertex_queue.begin(),
vertex_queue.end(),
VertexTotalOrdering<Vertex>(graph));
// Iterate over vertex_queue. Pick the first white vertex, add it
// to the independent set. Mark it black and its neighbors grey.
for (const Vertex& vertex : vertex_queue) {
if (vertex_color[vertex] != kWhite) {
continue;
}
ordering->push_back(vertex);
vertex_color[vertex] = kBlack;
const std::unordered_set<Vertex>& neighbors = graph.Neighbors(vertex);
for (const Vertex& neighbor : neighbors) {
vertex_color[neighbor] = kGrey;
}
}
int independent_set_size = ordering->size();
// Iterate over the vertices and add all the grey vertices to the
// ordering. At this stage there should only be black or grey
// vertices in the graph.
for (const Vertex& vertex : vertex_queue) {
DCHECK(vertex_color[vertex] != kWhite);
if (vertex_color[vertex] != kBlack) {
ordering->push_back(vertex);
}
}
CHECK_EQ(ordering->size(), num_vertices);
return independent_set_size;
}
// Same as above with one important difference. The ordering parameter
// is an input/output parameter which carries an initial ordering of
// the vertices of the graph. The greedy independent set algorithm
// starts by sorting the vertices in increasing order of their
// degree. The input ordering is used to stabilize this sort, i.e., if
// two vertices have the same degree then they are ordered in the same
// order in which they occur in "ordering".
//
// This is useful in eliminating non-determinism from the Schur
// ordering algorithm over all.
template <typename Vertex>
int StableIndependentSetOrdering(const Graph<Vertex>& graph,
std::vector<Vertex>* ordering) {
CHECK(ordering != nullptr);
const std::unordered_set<Vertex>& vertices = graph.vertices();
const int num_vertices = vertices.size();
CHECK_EQ(vertices.size(), ordering->size());
// Colors for labeling the graph during the BFS.
const char kWhite = 0;
const char kGrey = 1;
const char kBlack = 2;
std::vector<Vertex> vertex_queue(*ordering);
std::stable_sort(vertex_queue.begin(),
vertex_queue.end(),
VertexDegreeLessThan<Vertex>(graph));
// Mark all vertices white.
std::unordered_map<Vertex, char> vertex_color;
for (const Vertex& vertex : vertices) {
vertex_color[vertex] = kWhite;
}
ordering->clear();
ordering->reserve(num_vertices);
// Iterate over vertex_queue. Pick the first white vertex, add it
// to the independent set. Mark it black and its neighbors grey.
for (int i = 0; i < vertex_queue.size(); ++i) {
const Vertex& vertex = vertex_queue[i];
if (vertex_color[vertex] != kWhite) {
continue;
}
ordering->push_back(vertex);
vertex_color[vertex] = kBlack;
const std::unordered_set<Vertex>& neighbors = graph.Neighbors(vertex);
for (const Vertex& neighbor : neighbors) {
vertex_color[neighbor] = kGrey;
}
}
int independent_set_size = ordering->size();
// Iterate over the vertices and add all the grey vertices to the
// ordering. At this stage there should only be black or grey
// vertices in the graph.
for (const Vertex& vertex : vertex_queue) {
DCHECK(vertex_color[vertex] != kWhite);
if (vertex_color[vertex] != kBlack) {
ordering->push_back(vertex);
}
}
CHECK_EQ(ordering->size(), num_vertices);
return independent_set_size;
}
// Find the connected component for a vertex implemented using the
// find and update operation for disjoint-set. Recursively traverse
// the disjoint set structure till you reach a vertex whose connected
// component has the same id as the vertex itself. Along the way
// update the connected components of all the vertices. This updating
// is what gives this data structure its efficiency.
template <typename Vertex>
Vertex FindConnectedComponent(const Vertex& vertex,
std::unordered_map<Vertex, Vertex>* union_find) {
auto it = union_find->find(vertex);
DCHECK(it != union_find->end());
if (it->second != vertex) {
it->second = FindConnectedComponent(it->second, union_find);
}
return it->second;
}
// Compute a degree two constrained Maximum Spanning Tree/forest of
// the input graph. Caller owns the result.
//
// Finding degree 2 spanning tree of a graph is not always
// possible. For example a star graph, i.e. a graph with n-nodes
// where one node is connected to the other n-1 nodes does not have
// a any spanning trees of degree less than n-1.Even if such a tree
// exists, finding such a tree is NP-Hard.
// We get around both of these problems by using a greedy, degree
// constrained variant of Kruskal's algorithm. We start with a graph
// G_T with the same vertex set V as the input graph G(V,E) but an
// empty edge set. We then iterate over the edges of G in decreasing
// order of weight, adding them to G_T if doing so does not create a
// cycle in G_T} and the degree of all the vertices in G_T remains
// bounded by two. This O(|E|) algorithm results in a degree-2
// spanning forest, or a collection of linear paths that span the
// graph G.
template <typename Vertex>
std::unique_ptr<WeightedGraph<Vertex>> Degree2MaximumSpanningForest(
const WeightedGraph<Vertex>& graph) {
// Array of edges sorted in decreasing order of their weights.
std::vector<std::pair<double, std::pair<Vertex, Vertex>>> weighted_edges;
auto forest = std::make_unique<WeightedGraph<Vertex>>();
// Disjoint-set to keep track of the connected components in the
// maximum spanning tree.
std::unordered_map<Vertex, Vertex> disjoint_set;
// Sort of the edges in the graph in decreasing order of their
// weight. Also add the vertices of the graph to the Maximum
// Spanning Tree graph and set each vertex to be its own connected
// component in the disjoint_set structure.
const std::unordered_set<Vertex>& vertices = graph.vertices();
for (const Vertex& vertex1 : vertices) {
forest->AddVertex(vertex1, graph.VertexWeight(vertex1));
disjoint_set[vertex1] = vertex1;
const std::unordered_set<Vertex>& neighbors = graph.Neighbors(vertex1);
for (const Vertex& vertex2 : neighbors) {
if (vertex1 >= vertex2) {
continue;
}
const double weight = graph.EdgeWeight(vertex1, vertex2);
weighted_edges.push_back(
std::make_pair(weight, std::make_pair(vertex1, vertex2)));
}
}
// The elements of this vector, are pairs<edge_weight,
// edge>. Sorting it using the reverse iterators gives us the edges
// in decreasing order of edges.
std::sort(weighted_edges.rbegin(), weighted_edges.rend());
// Greedily add edges to the spanning tree/forest as long as they do
// not violate the degree/cycle constraint.
for (int i = 0; i < weighted_edges.size(); ++i) {
const std::pair<Vertex, Vertex>& edge = weighted_edges[i].second;
const Vertex vertex1 = edge.first;
const Vertex vertex2 = edge.second;
// Check if either of the vertices are of degree 2 already, in
// which case adding this edge will violate the degree 2
// constraint.
if ((forest->Neighbors(vertex1).size() == 2) ||
(forest->Neighbors(vertex2).size() == 2)) {
continue;
}
// Find the id of the connected component to which the two
// vertices belong to. If the id is the same, it means that the
// two of them are already connected to each other via some other
// vertex, and adding this edge will create a cycle.
Vertex root1 = FindConnectedComponent(vertex1, &disjoint_set);
Vertex root2 = FindConnectedComponent(vertex2, &disjoint_set);
if (root1 == root2) {
continue;
}
// This edge can be added, add an edge in either direction with
// the same weight as the original graph.
const double edge_weight = graph.EdgeWeight(vertex1, vertex2);
forest->AddEdge(vertex1, vertex2, edge_weight);
forest->AddEdge(vertex2, vertex1, edge_weight);
// Connected the two connected components by updating the
// disjoint_set structure. Always connect the connected component
// with the greater index with the connected component with the
// smaller index. This should ensure shallower trees, for quicker
// lookup.
if (root2 < root1) {
std::swap(root1, root2);
}
disjoint_set[root2] = root1;
}
return forest;
}
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_GRAPH_ALGORITHMS_H_
|