1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/implicit_schur_complement.h"
#include <cstddef>
#include <memory>
#include "Eigen/Dense"
#include "ceres/block_random_access_dense_matrix.h"
#include "ceres/block_sparse_matrix.h"
#include "ceres/casts.h"
#include "ceres/context_impl.h"
#include "ceres/internal/eigen.h"
#include "ceres/linear_least_squares_problems.h"
#include "ceres/linear_solver.h"
#include "ceres/schur_eliminator.h"
#include "ceres/triplet_sparse_matrix.h"
#include "ceres/types.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
using testing::AssertionResult;
const double kEpsilon = 1e-14;
class ImplicitSchurComplementTest : public ::testing::Test {
protected:
void SetUp() final {
std::unique_ptr<LinearLeastSquaresProblem> problem =
CreateLinearLeastSquaresProblemFromId(2);
CHECK(problem != nullptr);
A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
b_ = std::move(problem->b);
D_ = std::move(problem->D);
num_cols_ = A_->num_cols();
num_rows_ = A_->num_rows();
num_eliminate_blocks_ = problem->num_eliminate_blocks;
}
void ReducedLinearSystemAndSolution(double* D,
Matrix* lhs,
Vector* rhs,
Vector* solution) {
const CompressedRowBlockStructure* bs = A_->block_structure();
const int num_col_blocks = bs->cols.size();
std::vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);
for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
blocks[i - num_eliminate_blocks_] = bs->cols[i].size;
}
BlockRandomAccessDenseMatrix blhs(blocks);
const int num_schur_rows = blhs.num_rows();
LinearSolver::Options options;
options.elimination_groups.push_back(num_eliminate_blocks_);
options.type = DENSE_SCHUR;
ContextImpl context;
options.context = &context;
std::unique_ptr<SchurEliminatorBase> eliminator =
SchurEliminatorBase::Create(options);
CHECK(eliminator != nullptr);
const bool kFullRankETE = true;
eliminator->Init(num_eliminate_blocks_, kFullRankETE, bs);
lhs->resize(num_schur_rows, num_schur_rows);
rhs->resize(num_schur_rows);
eliminator->Eliminate(
BlockSparseMatrixData(*A_), b_.get(), D, &blhs, rhs->data());
MatrixRef lhs_ref(blhs.mutable_values(), num_schur_rows, num_schur_rows);
// lhs_ref is an upper triangular matrix. Construct a full version
// of lhs_ref in lhs by transposing lhs_ref, choosing the strictly
// lower triangular part of the matrix and adding it to lhs_ref.
*lhs = lhs_ref;
lhs->triangularView<Eigen::StrictlyLower>() =
lhs_ref.triangularView<Eigen::StrictlyUpper>().transpose();
solution->resize(num_cols_);
solution->setZero();
VectorRef schur_solution(solution->data() + num_cols_ - num_schur_rows,
num_schur_rows);
schur_solution = lhs->selfadjointView<Eigen::Upper>().llt().solve(*rhs);
eliminator->BackSubstitute(BlockSparseMatrixData(*A_),
b_.get(),
D,
schur_solution.data(),
solution->data());
}
AssertionResult TestImplicitSchurComplement(double* D) {
Matrix lhs;
Vector rhs;
Vector reference_solution;
ReducedLinearSystemAndSolution(D, &lhs, &rhs, &reference_solution);
LinearSolver::Options options;
options.elimination_groups.push_back(num_eliminate_blocks_);
options.preconditioner_type = JACOBI;
ContextImpl context;
options.context = &context;
ImplicitSchurComplement isc(options);
isc.Init(*A_, D, b_.get());
int num_sc_cols = lhs.cols();
for (int i = 0; i < num_sc_cols; ++i) {
Vector x(num_sc_cols);
x.setZero();
x(i) = 1.0;
Vector y(num_sc_cols);
y = lhs * x;
Vector z(num_sc_cols);
isc.RightMultiply(x.data(), z.data());
// The i^th column of the implicit schur complement is the same as
// the explicit schur complement.
if ((y - z).norm() > kEpsilon) {
return testing::AssertionFailure()
<< "Explicit and Implicit SchurComplements differ in "
<< "column " << i << ". explicit: " << y.transpose()
<< " implicit: " << z.transpose();
}
}
// Compare the rhs of the reduced linear system
if ((isc.rhs() - rhs).norm() > kEpsilon) {
return testing::AssertionFailure()
<< "Explicit and Implicit SchurComplements differ in "
<< "rhs. explicit: " << rhs.transpose()
<< " implicit: " << isc.rhs().transpose();
}
// Reference solution to the f_block.
const Vector reference_f_sol =
lhs.selfadjointView<Eigen::Upper>().llt().solve(rhs);
// Backsubstituted solution from the implicit schur solver using the
// reference solution to the f_block.
Vector sol(num_cols_);
isc.BackSubstitute(reference_f_sol.data(), sol.data());
if ((sol - reference_solution).norm() > kEpsilon) {
return testing::AssertionFailure()
<< "Explicit and Implicit SchurComplements solutions differ. "
<< "explicit: " << reference_solution.transpose()
<< " implicit: " << sol.transpose();
}
return testing::AssertionSuccess();
}
int num_rows_;
int num_cols_;
int num_eliminate_blocks_;
std::unique_ptr<BlockSparseMatrix> A_;
std::unique_ptr<double[]> b_;
std::unique_ptr<double[]> D_;
};
// Verify that the Schur Complement matrix implied by the
// ImplicitSchurComplement class matches the one explicitly computed
// by the SchurComplement solver.
//
// We do this with and without regularization to check that the
// support for the LM diagonal is correct.
TEST_F(ImplicitSchurComplementTest, SchurMatrixValuesTest) {
EXPECT_TRUE(TestImplicitSchurComplement(nullptr));
EXPECT_TRUE(TestImplicitSchurComplement(D_.get()));
}
} // namespace internal
} // namespace ceres
|