1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2017 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/inner_product_computer.h"
#include <algorithm>
#include <memory>
#include "ceres/small_blas.h"
namespace ceres {
namespace internal {
// Create the CompressedRowSparseMatrix matrix that will contain the
// inner product.
//
// storage_type controls whether the result matrix contains the upper
// or the lower triangular part of the product.
//
// num_nonzeros is the number of non-zeros in the result matrix.
std::unique_ptr<CompressedRowSparseMatrix>
InnerProductComputer::CreateResultMatrix(
const CompressedRowSparseMatrix::StorageType storage_type,
const int num_nonzeros) {
auto matrix = std::make_unique<CompressedRowSparseMatrix>(
m_.num_cols(), m_.num_cols(), num_nonzeros);
matrix->set_storage_type(storage_type);
const CompressedRowBlockStructure* bs = m_.block_structure();
const std::vector<Block>& blocks = bs->cols;
matrix->mutable_row_blocks()->resize(blocks.size());
matrix->mutable_col_blocks()->resize(blocks.size());
for (int i = 0; i < blocks.size(); ++i) {
(*(matrix->mutable_row_blocks()))[i] = blocks[i].size;
(*(matrix->mutable_col_blocks()))[i] = blocks[i].size;
}
return matrix;
}
// Given the set of product terms in the inner product, return the
// total number of non-zeros in the result and for each row block of
// the result matrix, compute the number of non-zeros in any one row
// of the row block.
int InnerProductComputer::ComputeNonzeros(
const std::vector<InnerProductComputer::ProductTerm>& product_terms,
std::vector<int>* row_nnz) {
const CompressedRowBlockStructure* bs = m_.block_structure();
const std::vector<Block>& blocks = bs->cols;
row_nnz->resize(blocks.size());
std::fill(row_nnz->begin(), row_nnz->end(), 0);
// First product term.
(*row_nnz)[product_terms[0].row] = blocks[product_terms[0].col].size;
int num_nonzeros =
blocks[product_terms[0].row].size * blocks[product_terms[0].col].size;
// Remaining product terms.
for (int i = 1; i < product_terms.size(); ++i) {
const ProductTerm& previous = product_terms[i - 1];
const ProductTerm& current = product_terms[i];
// Each (row, col) block counts only once.
// This check depends on product sorted on (row, col).
if (current.row != previous.row || current.col != previous.col) {
(*row_nnz)[current.row] += blocks[current.col].size;
num_nonzeros += blocks[current.row].size * blocks[current.col].size;
}
}
return num_nonzeros;
}
InnerProductComputer::InnerProductComputer(const BlockSparseMatrix& m,
const int start_row_block,
const int end_row_block)
: m_(m), start_row_block_(start_row_block), end_row_block_(end_row_block) {}
// Compute the sparsity structure of the product m.transpose() * m
// and create a CompressedRowSparseMatrix corresponding to it.
//
// Also compute the "program" vector, which for every term in the
// block outer product provides the information for the entry in the
// values array of the result matrix where it should be accumulated.
//
// Since the entries of the program are the same for rows with the
// same sparsity structure, the program only stores the result for one
// row per row block. The Compute function reuses this information for
// each row in the row block.
//
// product_storage_type controls the form of the output matrix. It
// can be LOWER_TRIANGULAR or UPPER_TRIANGULAR.
std::unique_ptr<InnerProductComputer> InnerProductComputer::Create(
const BlockSparseMatrix& m,
CompressedRowSparseMatrix::StorageType product_storage_type) {
return InnerProductComputer::Create(
m, 0, m.block_structure()->rows.size(), product_storage_type);
}
std::unique_ptr<InnerProductComputer> InnerProductComputer::Create(
const BlockSparseMatrix& m,
const int start_row_block,
const int end_row_block,
CompressedRowSparseMatrix::StorageType product_storage_type) {
CHECK(product_storage_type == CompressedRowSparseMatrix::LOWER_TRIANGULAR ||
product_storage_type == CompressedRowSparseMatrix::UPPER_TRIANGULAR);
CHECK_GT(m.num_nonzeros(), 0)
<< "Congratulations, you found a bug in Ceres. Please report it.";
std::unique_ptr<InnerProductComputer> inner_product_computer(
new InnerProductComputer(m, start_row_block, end_row_block));
inner_product_computer->Init(product_storage_type);
return inner_product_computer;
}
void InnerProductComputer::Init(
const CompressedRowSparseMatrix::StorageType product_storage_type) {
std::vector<InnerProductComputer::ProductTerm> product_terms;
const CompressedRowBlockStructure* bs = m_.block_structure();
// Give input matrix m in Block Sparse format
// (row_block, col_block)
// represent each block multiplication
// (row_block, col_block1)' X (row_block, col_block2)
// by its product term:
// (col_block1, col_block2, index)
for (int row_block = start_row_block_; row_block < end_row_block_;
++row_block) {
const CompressedRow& row = bs->rows[row_block];
for (int c1 = 0; c1 < row.cells.size(); ++c1) {
const Cell& cell1 = row.cells[c1];
int c2_begin, c2_end;
if (product_storage_type == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
c2_begin = 0;
c2_end = c1 + 1;
} else {
c2_begin = c1;
c2_end = row.cells.size();
}
for (int c2 = c2_begin; c2 < c2_end; ++c2) {
const Cell& cell2 = row.cells[c2];
product_terms.emplace_back(
cell1.block_id, cell2.block_id, product_terms.size());
}
}
}
std::sort(product_terms.begin(), product_terms.end());
ComputeOffsetsAndCreateResultMatrix(product_storage_type, product_terms);
}
void InnerProductComputer::ComputeOffsetsAndCreateResultMatrix(
const CompressedRowSparseMatrix::StorageType product_storage_type,
const std::vector<InnerProductComputer::ProductTerm>& product_terms) {
const std::vector<Block>& col_blocks = m_.block_structure()->cols;
std::vector<int> row_block_nnz;
const int num_nonzeros = ComputeNonzeros(product_terms, &row_block_nnz);
result_ = CreateResultMatrix(product_storage_type, num_nonzeros);
// Populate the row non-zero counts in the result matrix.
int* crsm_rows = result_->mutable_rows();
crsm_rows[0] = 0;
for (int i = 0; i < col_blocks.size(); ++i) {
for (int j = 0; j < col_blocks[i].size; ++j, ++crsm_rows) {
*(crsm_rows + 1) = *crsm_rows + row_block_nnz[i];
}
}
// The following macro FILL_CRSM_COL_BLOCK is key to understanding
// how this class works.
//
// It does two things.
//
// Sets the value for the current term in the result_offsets_ array
// and populates the cols array of the result matrix.
//
// row_block and col_block as the names imply, refer to the row and
// column blocks of the current term.
//
// row_nnz is the number of nonzeros in the result_matrix at the
// beginning of the first row of row_block.
//
// col_nnz is the number of nonzeros in the first row of the row
// block that occur before the current column block, i.e. this is
// sum of the sizes of all the column blocks in this row block that
// came before this column block.
//
// Given these two numbers and the total number of nonzeros in this
// row (nnz_in_row), we can now populate the cols array as follows:
//
// nnz + j * nnz_in_row is the beginning of the j^th row.
//
// nnz + j * nnz_in_row + col_nnz is the beginning of the column
// block in the j^th row.
//
// nnz + j * nnz_in_row + col_nnz + k is then the j^th row and the
// k^th column of the product block, whose value is
//
// col_blocks[col_block].position + k, which is the column number of
// the k^th column of the current column block.
#define FILL_CRSM_COL_BLOCK \
const int row_block = current->row; \
const int col_block = current->col; \
const int nnz_in_row = row_block_nnz[row_block]; \
int* crsm_cols = result_->mutable_cols(); \
result_offsets_[current->index] = nnz + col_nnz; \
for (int j = 0; j < col_blocks[row_block].size; ++j) { \
for (int k = 0; k < col_blocks[col_block].size; ++k) { \
crsm_cols[nnz + j * nnz_in_row + col_nnz + k] = \
col_blocks[col_block].position + k; \
} \
}
result_offsets_.resize(product_terms.size());
int col_nnz = 0;
int nnz = 0;
// Process the first term.
const InnerProductComputer::ProductTerm* current = &product_terms[0];
FILL_CRSM_COL_BLOCK;
// Process the rest of the terms.
for (int i = 1; i < product_terms.size(); ++i) {
current = &product_terms[i];
const InnerProductComputer::ProductTerm* previous = &product_terms[i - 1];
// If the current term is the same as the previous term, then it
// stores its product at the same location as the previous term.
if (previous->row == current->row && previous->col == current->col) {
result_offsets_[current->index] = result_offsets_[previous->index];
continue;
}
if (previous->row == current->row) {
// if the current and previous terms are in the same row block,
// then they differ in the column block, in which case advance
// col_nnz by the column size of the prevous term.
col_nnz += col_blocks[previous->col].size;
} else {
// If we have moved to a new row-block , then col_nnz is zero,
// and nnz is set to the beginning of the row block.
col_nnz = 0;
nnz += row_block_nnz[previous->row] * col_blocks[previous->row].size;
}
FILL_CRSM_COL_BLOCK;
}
}
// Use the results_offsets_ array to numerically compute the product
// m' * m and store it in result_.
//
// TODO(sameeragarwal): Multithreading support.
void InnerProductComputer::Compute() {
const double* m_values = m_.values();
const CompressedRowBlockStructure* bs = m_.block_structure();
const CompressedRowSparseMatrix::StorageType storage_type =
result_->storage_type();
result_->SetZero();
double* values = result_->mutable_values();
const int* rows = result_->rows();
int cursor = 0;
// Iterate row blocks.
for (int r = start_row_block_; r < end_row_block_; ++r) {
const CompressedRow& m_row = bs->rows[r];
for (int c1 = 0; c1 < m_row.cells.size(); ++c1) {
const Cell& cell1 = m_row.cells[c1];
const int c1_size = bs->cols[cell1.block_id].size;
const int row_nnz = rows[bs->cols[cell1.block_id].position + 1] -
rows[bs->cols[cell1.block_id].position];
int c2_begin, c2_end;
if (storage_type == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
c2_begin = 0;
c2_end = c1 + 1;
} else {
c2_begin = c1;
c2_end = m_row.cells.size();
}
for (int c2 = c2_begin; c2 < c2_end; ++c2, ++cursor) {
const Cell& cell2 = m_row.cells[c2];
const int c2_size = bs->cols[cell2.block_id].size;
// clang-format off
MatrixTransposeMatrixMultiply<Eigen::Dynamic, Eigen::Dynamic,
Eigen::Dynamic, Eigen::Dynamic, 1>(
m_values + cell1.position,
m_row.block.size, c1_size,
m_values + cell2.position,
m_row.block.size, c2_size,
values + result_offsets_[cursor],
0, 0, c1_size, row_nnz);
// clang-format on
}
}
}
CHECK_EQ(cursor, result_offsets_.size());
}
} // namespace internal
} // namespace ceres
|