1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2018 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/iterative_refiner.h"
#include <utility>
#include "Eigen/Dense"
#include "ceres/internal/eigen.h"
#include "ceres/sparse_cholesky.h"
#include "ceres/sparse_matrix.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
// Macros to help us define virtual methods which we do not expect to
// use/call in this test.
#define DO_NOT_CALL \
{ LOG(FATAL) << "DO NOT CALL"; }
#define DO_NOT_CALL_WITH_RETURN(x) \
{ \
LOG(FATAL) << "DO NOT CALL"; \
return x; \
}
// A fake SparseMatrix, which uses an Eigen matrix to do the real work.
class FakeSparseMatrix : public SparseMatrix {
public:
explicit FakeSparseMatrix(Matrix m) : m_(std::move(m)) {}
// y += Ax
void RightMultiply(const double* x, double* y) const final {
VectorRef(y, m_.cols()) += m_ * ConstVectorRef(x, m_.cols());
}
// y += A'x
void LeftMultiply(const double* x, double* y) const final {
// We will assume that this is a symmetric matrix.
RightMultiply(x, y);
}
double* mutable_values() final { return m_.data(); }
const double* values() const final { return m_.data(); }
int num_rows() const final { return m_.cols(); }
int num_cols() const final { return m_.cols(); }
int num_nonzeros() const final { return m_.cols() * m_.cols(); }
// The following methods are not needed for tests in this file.
void SquaredColumnNorm(double* x) const final DO_NOT_CALL;
void ScaleColumns(const double* scale) final DO_NOT_CALL;
void SetZero() final DO_NOT_CALL;
void ToDenseMatrix(Matrix* dense_matrix) const final DO_NOT_CALL;
void ToTextFile(FILE* file) const final DO_NOT_CALL;
private:
Matrix m_;
};
// A fake SparseCholesky which uses Eigen's Cholesky factorization to
// do the real work. The template parameter allows us to work in
// doubles or floats, even though the source matrix is double.
template <typename Scalar>
class FakeSparseCholesky : public SparseCholesky {
public:
explicit FakeSparseCholesky(const Matrix& lhs) { lhs_ = lhs.cast<Scalar>(); }
LinearSolverTerminationType Solve(const double* rhs_ptr,
double* solution_ptr,
std::string* message) final {
const int num_cols = lhs_.cols();
VectorRef solution(solution_ptr, num_cols);
ConstVectorRef rhs(rhs_ptr, num_cols);
solution = lhs_.llt().solve(rhs.cast<Scalar>()).template cast<double>();
return LINEAR_SOLVER_SUCCESS;
}
// The following methods are not needed for tests in this file.
CompressedRowSparseMatrix::StorageType StorageType() const final
DO_NOT_CALL_WITH_RETURN(CompressedRowSparseMatrix::UPPER_TRIANGULAR);
LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
std::string* message) final
DO_NOT_CALL_WITH_RETURN(LINEAR_SOLVER_FAILURE);
private:
Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> lhs_;
};
#undef DO_NOT_CALL
#undef DO_NOT_CALL_WITH_RETURN
class IterativeRefinerTest : public ::testing::Test {
public:
void SetUp() override {
num_cols_ = 5;
max_num_iterations_ = 30;
Matrix m(num_cols_, num_cols_);
m.setRandom();
lhs_ = m * m.transpose();
solution_.resize(num_cols_);
solution_.setRandom();
rhs_ = lhs_ * solution_;
};
protected:
int num_cols_;
int max_num_iterations_;
Matrix lhs_;
Vector rhs_, solution_;
};
TEST_F(IterativeRefinerTest, RandomSolutionWithExactFactorizationConverges) {
FakeSparseMatrix lhs(lhs_);
FakeSparseCholesky<double> sparse_cholesky(lhs_);
IterativeRefiner refiner(max_num_iterations_);
Vector refined_solution(num_cols_);
refined_solution.setRandom();
refiner.Refine(lhs, rhs_.data(), &sparse_cholesky, refined_solution.data());
EXPECT_NEAR((lhs_ * refined_solution - rhs_).norm(),
0.0,
std::numeric_limits<double>::epsilon() * 10);
}
TEST_F(IterativeRefinerTest,
RandomSolutionWithApproximationFactorizationConverges) {
FakeSparseMatrix lhs(lhs_);
// Use a single precision Cholesky factorization of the double
// precision matrix. This will give us an approximate factorization.
FakeSparseCholesky<float> sparse_cholesky(lhs_);
IterativeRefiner refiner(max_num_iterations_);
Vector refined_solution(num_cols_);
refined_solution.setRandom();
refiner.Refine(lhs, rhs_.data(), &sparse_cholesky, refined_solution.data());
EXPECT_NEAR((lhs_ * refined_solution - rhs_).norm(),
0.0,
std::numeric_limits<double>::epsilon() * 10);
}
} // namespace internal
} // namespace ceres
|