1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/levenberg_marquardt_strategy.h"
#include <memory>
#include "ceres/internal/eigen.h"
#include "ceres/linear_solver.h"
#include "ceres/trust_region_strategy.h"
#include "glog/logging.h"
#include "gmock/gmock.h"
#include "gmock/mock-log.h"
#include "gtest/gtest.h"
using testing::_;
using testing::AllOf;
using testing::AnyNumber;
using testing::HasSubstr;
using testing::ScopedMockLog;
namespace ceres {
namespace internal {
const double kTolerance = 1e-16;
// Linear solver that takes as input a vector and checks that the
// caller passes the same vector as LinearSolver::PerSolveOptions.D.
class RegularizationCheckingLinearSolver : public DenseSparseMatrixSolver {
public:
RegularizationCheckingLinearSolver(const int num_cols, const double* diagonal)
: num_cols_(num_cols), diagonal_(diagonal) {}
private:
LinearSolver::Summary SolveImpl(
DenseSparseMatrix* A,
const double* b,
const LinearSolver::PerSolveOptions& per_solve_options,
double* x) final {
CHECK(per_solve_options.D != nullptr);
for (int i = 0; i < num_cols_; ++i) {
EXPECT_NEAR(per_solve_options.D[i], diagonal_[i], kTolerance)
<< i << " " << per_solve_options.D[i] << " " << diagonal_[i];
}
return {};
}
const int num_cols_;
const double* diagonal_;
};
TEST(LevenbergMarquardtStrategy, AcceptRejectStepRadiusScaling) {
TrustRegionStrategy::Options options;
options.initial_radius = 2.0;
options.max_radius = 20.0;
options.min_lm_diagonal = 1e-8;
options.max_lm_diagonal = 1e8;
// We need a non-null pointer here, so anything should do.
std::unique_ptr<LinearSolver> linear_solver(
new RegularizationCheckingLinearSolver(0, nullptr));
options.linear_solver = linear_solver.get();
LevenbergMarquardtStrategy lms(options);
EXPECT_EQ(lms.Radius(), options.initial_radius);
lms.StepRejected(0.0);
EXPECT_EQ(lms.Radius(), 1.0);
lms.StepRejected(-1.0);
EXPECT_EQ(lms.Radius(), 0.25);
lms.StepAccepted(1.0);
EXPECT_EQ(lms.Radius(), 0.25 * 3.0);
lms.StepAccepted(1.0);
EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0);
lms.StepAccepted(0.25);
EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125);
lms.StepAccepted(1.0);
EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0);
lms.StepAccepted(1.0);
EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0 * 3.0);
lms.StepAccepted(1.0);
EXPECT_EQ(lms.Radius(), options.max_radius);
}
TEST(LevenbergMarquardtStrategy, CorrectDiagonalToLinearSolver) {
Matrix jacobian(2, 3);
jacobian.setZero();
jacobian(0, 0) = 0.0;
jacobian(0, 1) = 1.0;
jacobian(1, 1) = 1.0;
jacobian(0, 2) = 100.0;
double residual = 1.0;
double x[3];
DenseSparseMatrix dsm(jacobian);
TrustRegionStrategy::Options options;
options.initial_radius = 2.0;
options.max_radius = 20.0;
options.min_lm_diagonal = 1e-2;
options.max_lm_diagonal = 1e2;
double diagonal[3];
diagonal[0] = options.min_lm_diagonal;
diagonal[1] = 2.0;
diagonal[2] = options.max_lm_diagonal;
for (double& diagonal_entry : diagonal) {
diagonal_entry = sqrt(diagonal_entry / options.initial_radius);
}
RegularizationCheckingLinearSolver linear_solver(3, diagonal);
options.linear_solver = &linear_solver;
LevenbergMarquardtStrategy lms(options);
TrustRegionStrategy::PerSolveOptions pso;
{
ScopedMockLog log;
EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber());
// This using directive is needed get around the fact that there
// are versions of glog which are not in the google namespace.
using namespace google;
#if defined(GLOG_NO_ABBREVIATED_SEVERITIES)
// Use GLOG_WARNING to support MSVC if GLOG_NO_ABBREVIATED_SEVERITIES
// is defined.
EXPECT_CALL(log,
Log(GLOG_WARNING, _, HasSubstr("Failed to compute a step")));
#else
EXPECT_CALL(log,
Log(google::WARNING, _, HasSubstr("Failed to compute a step")));
#endif
TrustRegionStrategy::Summary summary =
lms.ComputeStep(pso, &dsm, &residual, x);
EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_FAILURE);
}
}
} // namespace internal
} // namespace ceres
|