File: levenberg_marquardt_strategy_test.cc

package info (click to toggle)
ceres-solver 2.1.0%2Breally2.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,656 kB
  • sloc: cpp: 80,895; ansic: 2,869; python: 679; sh: 78; makefile: 74; xml: 21
file content (167 lines) | stat: -rw-r--r-- 5,836 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#include "ceres/levenberg_marquardt_strategy.h"

#include <memory>

#include "ceres/internal/eigen.h"
#include "ceres/linear_solver.h"
#include "ceres/trust_region_strategy.h"
#include "glog/logging.h"
#include "gmock/gmock.h"
#include "gmock/mock-log.h"
#include "gtest/gtest.h"

using testing::_;
using testing::AllOf;
using testing::AnyNumber;
using testing::HasSubstr;
using testing::ScopedMockLog;

namespace ceres {
namespace internal {

const double kTolerance = 1e-16;

// Linear solver that takes as input a vector and checks that the
// caller passes the same vector as LinearSolver::PerSolveOptions.D.
class RegularizationCheckingLinearSolver : public DenseSparseMatrixSolver {
 public:
  RegularizationCheckingLinearSolver(const int num_cols, const double* diagonal)
      : num_cols_(num_cols), diagonal_(diagonal) {}

 private:
  LinearSolver::Summary SolveImpl(
      DenseSparseMatrix* A,
      const double* b,
      const LinearSolver::PerSolveOptions& per_solve_options,
      double* x) final {
    CHECK(per_solve_options.D != nullptr);
    for (int i = 0; i < num_cols_; ++i) {
      EXPECT_NEAR(per_solve_options.D[i], diagonal_[i], kTolerance)
          << i << " " << per_solve_options.D[i] << " " << diagonal_[i];
    }
    return {};
  }

  const int num_cols_;
  const double* diagonal_;
};

TEST(LevenbergMarquardtStrategy, AcceptRejectStepRadiusScaling) {
  TrustRegionStrategy::Options options;
  options.initial_radius = 2.0;
  options.max_radius = 20.0;
  options.min_lm_diagonal = 1e-8;
  options.max_lm_diagonal = 1e8;

  // We need a non-null pointer here, so anything should do.
  std::unique_ptr<LinearSolver> linear_solver(
      new RegularizationCheckingLinearSolver(0, nullptr));
  options.linear_solver = linear_solver.get();

  LevenbergMarquardtStrategy lms(options);
  EXPECT_EQ(lms.Radius(), options.initial_radius);
  lms.StepRejected(0.0);
  EXPECT_EQ(lms.Radius(), 1.0);
  lms.StepRejected(-1.0);
  EXPECT_EQ(lms.Radius(), 0.25);
  lms.StepAccepted(1.0);
  EXPECT_EQ(lms.Radius(), 0.25 * 3.0);
  lms.StepAccepted(1.0);
  EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0);
  lms.StepAccepted(0.25);
  EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125);
  lms.StepAccepted(1.0);
  EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0);
  lms.StepAccepted(1.0);
  EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0 * 3.0);
  lms.StepAccepted(1.0);
  EXPECT_EQ(lms.Radius(), options.max_radius);
}

TEST(LevenbergMarquardtStrategy, CorrectDiagonalToLinearSolver) {
  Matrix jacobian(2, 3);
  jacobian.setZero();
  jacobian(0, 0) = 0.0;
  jacobian(0, 1) = 1.0;
  jacobian(1, 1) = 1.0;
  jacobian(0, 2) = 100.0;

  double residual = 1.0;
  double x[3];
  DenseSparseMatrix dsm(jacobian);

  TrustRegionStrategy::Options options;
  options.initial_radius = 2.0;
  options.max_radius = 20.0;
  options.min_lm_diagonal = 1e-2;
  options.max_lm_diagonal = 1e2;

  double diagonal[3];
  diagonal[0] = options.min_lm_diagonal;
  diagonal[1] = 2.0;
  diagonal[2] = options.max_lm_diagonal;
  for (double& diagonal_entry : diagonal) {
    diagonal_entry = sqrt(diagonal_entry / options.initial_radius);
  }

  RegularizationCheckingLinearSolver linear_solver(3, diagonal);
  options.linear_solver = &linear_solver;

  LevenbergMarquardtStrategy lms(options);
  TrustRegionStrategy::PerSolveOptions pso;

  {
    ScopedMockLog log;
    EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber());
    // This using directive is needed get around the fact that there
    // are versions of glog which are not in the google namespace.
    using namespace google;

#if defined(GLOG_NO_ABBREVIATED_SEVERITIES)
    // Use GLOG_WARNING to support MSVC if GLOG_NO_ABBREVIATED_SEVERITIES
    // is defined.
    EXPECT_CALL(log,
                Log(GLOG_WARNING, _, HasSubstr("Failed to compute a step")));
#else
    EXPECT_CALL(log,
                Log(google::WARNING, _, HasSubstr("Failed to compute a step")));
#endif

    TrustRegionStrategy::Summary summary =
        lms.ComputeStep(pso, &dsm, &residual, x);
    EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_FAILURE);
  }
}

}  // namespace internal
}  // namespace ceres