1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/line_search.h"
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream> // NOLINT
#include <memory>
#include "ceres/evaluator.h"
#include "ceres/function_sample.h"
#include "ceres/internal/eigen.h"
#include "ceres/map_util.h"
#include "ceres/polynomial.h"
#include "ceres/stringprintf.h"
#include "ceres/wall_time.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
using std::map;
using std::ostream;
using std::string;
using std::vector;
namespace {
// Precision used for floating point values in error message output.
const int kErrorMessageNumericPrecision = 8;
} // namespace
ostream& operator<<(ostream& os, const FunctionSample& sample);
// Convenience stream operator for pushing FunctionSamples into log messages.
ostream& operator<<(ostream& os, const FunctionSample& sample) {
os << sample.ToDebugString();
return os;
}
LineSearch::~LineSearch() = default;
LineSearch::LineSearch(const LineSearch::Options& options)
: options_(options) {}
std::unique_ptr<LineSearch> LineSearch::Create(
const LineSearchType line_search_type,
const LineSearch::Options& options,
string* error) {
switch (line_search_type) {
case ceres::ARMIJO:
return std::make_unique<ArmijoLineSearch>(options);
case ceres::WOLFE:
return std::make_unique<WolfeLineSearch>(options);
default:
*error = string("Invalid line search algorithm type: ") +
LineSearchTypeToString(line_search_type) +
string(", unable to create line search.");
}
return nullptr;
}
LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
: evaluator_(evaluator),
position_(evaluator->NumParameters()),
direction_(evaluator->NumEffectiveParameters()),
scaled_direction_(evaluator->NumEffectiveParameters()),
initial_evaluator_residual_time_in_seconds(0.0),
initial_evaluator_jacobian_time_in_seconds(0.0) {}
void LineSearchFunction::Init(const Vector& position, const Vector& direction) {
position_ = position;
direction_ = direction;
}
void LineSearchFunction::Evaluate(const double x,
const bool evaluate_gradient,
FunctionSample* output) {
output->x = x;
output->vector_x_is_valid = false;
output->value_is_valid = false;
output->gradient_is_valid = false;
output->vector_gradient_is_valid = false;
scaled_direction_ = output->x * direction_;
output->vector_x.resize(position_.rows(), 1);
if (!evaluator_->Plus(position_.data(),
scaled_direction_.data(),
output->vector_x.data())) {
return;
}
output->vector_x_is_valid = true;
double* gradient = nullptr;
if (evaluate_gradient) {
output->vector_gradient.resize(direction_.rows(), 1);
gradient = output->vector_gradient.data();
}
const bool eval_status = evaluator_->Evaluate(
output->vector_x.data(), &(output->value), nullptr, gradient, nullptr);
if (!eval_status || !std::isfinite(output->value)) {
return;
}
output->value_is_valid = true;
if (!evaluate_gradient) {
return;
}
output->gradient = direction_.dot(output->vector_gradient);
if (!std::isfinite(output->gradient)) {
return;
}
output->gradient_is_valid = true;
output->vector_gradient_is_valid = true;
}
double LineSearchFunction::DirectionInfinityNorm() const {
return direction_.lpNorm<Eigen::Infinity>();
}
void LineSearchFunction::ResetTimeStatistics() {
const map<string, CallStatistics> evaluator_statistics =
evaluator_->Statistics();
initial_evaluator_residual_time_in_seconds =
FindWithDefault(
evaluator_statistics, "Evaluator::Residual", CallStatistics())
.time;
initial_evaluator_jacobian_time_in_seconds =
FindWithDefault(
evaluator_statistics, "Evaluator::Jacobian", CallStatistics())
.time;
}
void LineSearchFunction::TimeStatistics(
double* cost_evaluation_time_in_seconds,
double* gradient_evaluation_time_in_seconds) const {
const map<string, CallStatistics> evaluator_time_statistics =
evaluator_->Statistics();
*cost_evaluation_time_in_seconds =
FindWithDefault(
evaluator_time_statistics, "Evaluator::Residual", CallStatistics())
.time -
initial_evaluator_residual_time_in_seconds;
// Strictly speaking this will slightly underestimate the time spent
// evaluating the gradient of the line search univariate cost function as it
// does not count the time spent performing the dot product with the direction
// vector. However, this will typically be small by comparison, and also
// allows direct subtraction of the timing information from the totals for
// the evaluator returned in the solver summary.
*gradient_evaluation_time_in_seconds =
FindWithDefault(
evaluator_time_statistics, "Evaluator::Jacobian", CallStatistics())
.time -
initial_evaluator_jacobian_time_in_seconds;
}
void LineSearch::Search(double step_size_estimate,
double initial_cost,
double initial_gradient,
Summary* summary) const {
const double start_time = WallTimeInSeconds();
CHECK(summary != nullptr);
*summary = LineSearch::Summary();
summary->cost_evaluation_time_in_seconds = 0.0;
summary->gradient_evaluation_time_in_seconds = 0.0;
summary->polynomial_minimization_time_in_seconds = 0.0;
options().function->ResetTimeStatistics();
this->DoSearch(step_size_estimate, initial_cost, initial_gradient, summary);
options().function->TimeStatistics(
&summary->cost_evaluation_time_in_seconds,
&summary->gradient_evaluation_time_in_seconds);
summary->total_time_in_seconds = WallTimeInSeconds() - start_time;
}
// Returns step_size \in [min_step_size, max_step_size] which minimizes the
// polynomial of degree defined by interpolation_type which interpolates all
// of the provided samples with valid values.
double LineSearch::InterpolatingPolynomialMinimizingStepSize(
const LineSearchInterpolationType& interpolation_type,
const FunctionSample& lowerbound,
const FunctionSample& previous,
const FunctionSample& current,
const double min_step_size,
const double max_step_size) const {
if (!current.value_is_valid ||
(interpolation_type == BISECTION && max_step_size <= current.x)) {
// Either: sample is invalid; or we are using BISECTION and contracting
// the step size.
return std::min(std::max(current.x * 0.5, min_step_size), max_step_size);
} else if (interpolation_type == BISECTION) {
CHECK_GT(max_step_size, current.x);
// We are expanding the search (during a Wolfe bracketing phase) using
// BISECTION interpolation. Using BISECTION when trying to expand is
// strictly speaking an oxymoron, but we define this to mean always taking
// the maximum step size so that the Armijo & Wolfe implementations are
// agnostic to the interpolation type.
return max_step_size;
}
// Only check if lower-bound is valid here, where it is required
// to avoid replicating current.value_is_valid == false
// behaviour in WolfeLineSearch.
CHECK(lowerbound.value_is_valid)
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
<< "Ceres bug: lower-bound sample for interpolation is invalid, "
<< "please contact the developers!, interpolation_type: "
<< LineSearchInterpolationTypeToString(interpolation_type)
<< ", lowerbound: " << lowerbound << ", previous: " << previous
<< ", current: " << current;
// Select step size by interpolating the function and gradient values
// and minimizing the corresponding polynomial.
vector<FunctionSample> samples;
samples.push_back(lowerbound);
if (interpolation_type == QUADRATIC) {
// Two point interpolation using function values and the
// gradient at the lower bound.
samples.emplace_back(current.x, current.value);
if (previous.value_is_valid) {
// Three point interpolation, using function values and the
// gradient at the lower bound.
samples.emplace_back(previous.x, previous.value);
}
} else if (interpolation_type == CUBIC) {
// Two point interpolation using the function values and the gradients.
samples.push_back(current);
if (previous.value_is_valid) {
// Three point interpolation using the function values and
// the gradients.
samples.push_back(previous);
}
} else {
LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
<< LineSearchInterpolationTypeToString(interpolation_type)
<< ", please contact the developers!";
}
double step_size = 0.0, unused_min_value = 0.0;
MinimizeInterpolatingPolynomial(
samples, min_step_size, max_step_size, &step_size, &unused_min_value);
return step_size;
}
ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
: LineSearch(options) {}
void ArmijoLineSearch::DoSearch(const double step_size_estimate,
const double initial_cost,
const double initial_gradient,
Summary* summary) const {
CHECK_GE(step_size_estimate, 0.0);
CHECK_GT(options().sufficient_decrease, 0.0);
CHECK_LT(options().sufficient_decrease, 1.0);
CHECK_GT(options().max_num_iterations, 0);
LineSearchFunction* function = options().function;
// Note initial_cost & initial_gradient are evaluated at step_size = 0,
// not step_size_estimate, which is our starting guess.
FunctionSample initial_position(0.0, initial_cost, initial_gradient);
initial_position.vector_x = function->position();
initial_position.vector_x_is_valid = true;
const double descent_direction_max_norm = function->DirectionInfinityNorm();
FunctionSample previous;
FunctionSample current;
// As the Armijo line search algorithm always uses the initial point, for
// which both the function value and derivative are known, when fitting a
// minimizing polynomial, we can fit up to a quadratic without requiring the
// gradient at the current query point.
const bool kEvaluateGradient = options().interpolation_type == CUBIC;
++summary->num_function_evaluations;
if (kEvaluateGradient) {
++summary->num_gradient_evaluations;
}
function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t);
while (!current.value_is_valid ||
current.value > (initial_cost + options().sufficient_decrease *
initial_gradient * current.x)) {
// If current.value_is_valid is false, we treat it as if the cost at that
// point is not large enough to satisfy the sufficient decrease condition.
++summary->num_iterations;
if (summary->num_iterations >= options().max_num_iterations) {
summary->error = StringPrintf(
"Line search failed: Armijo failed to find a point "
"satisfying the sufficient decrease condition within "
"specified max_num_iterations: %d.",
options().max_num_iterations);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return;
}
const double polynomial_minimization_start_time = WallTimeInSeconds();
const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
options().interpolation_type,
initial_position,
previous,
current,
(options().max_step_contraction * current.x),
(options().min_step_contraction * current.x));
summary->polynomial_minimization_time_in_seconds +=
(WallTimeInSeconds() - polynomial_minimization_start_time);
if (step_size * descent_direction_max_norm < options().min_step_size) {
summary->error = StringPrintf(
"Line search failed: step_size too small: %.5e "
"with descent_direction_max_norm: %.5e.",
step_size,
descent_direction_max_norm);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return;
}
previous = current;
++summary->num_function_evaluations;
if (kEvaluateGradient) {
++summary->num_gradient_evaluations;
}
function->Evaluate(step_size, kEvaluateGradient, ¤t);
}
summary->optimal_point = current;
summary->success = true;
}
WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
: LineSearch(options) {}
void WolfeLineSearch::DoSearch(const double step_size_estimate,
const double initial_cost,
const double initial_gradient,
Summary* summary) const {
// All parameters should have been validated by the Solver, but as
// invalid values would produce crazy nonsense, hard check them here.
CHECK_GE(step_size_estimate, 0.0);
CHECK_GT(options().sufficient_decrease, 0.0);
CHECK_GT(options().sufficient_curvature_decrease,
options().sufficient_decrease);
CHECK_LT(options().sufficient_curvature_decrease, 1.0);
CHECK_GT(options().max_step_expansion, 1.0);
// Note initial_cost & initial_gradient are evaluated at step_size = 0,
// not step_size_estimate, which is our starting guess.
FunctionSample initial_position(0.0, initial_cost, initial_gradient);
initial_position.vector_x = options().function->position();
initial_position.vector_x_is_valid = true;
bool do_zoom_search = false;
// Important: The high/low in bracket_high & bracket_low refer to their
// _function_ values, not their step sizes i.e. it is _not_ required that
// bracket_low.x < bracket_high.x.
FunctionSample solution, bracket_low, bracket_high;
// Wolfe bracketing phase: Increases step_size until either it finds a point
// that satisfies the (strong) Wolfe conditions, or an interval that brackets
// step sizes which satisfy the conditions. From Nocedal & Wright [1] p61 the
// interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
// the strong Wolfe conditions if one of the following conditions are met:
//
// 1. step_size_{k} violates the sufficient decrease (Armijo) condition.
// 2. f(step_size_{k}) >= f(step_size_{k-1}).
// 3. f'(step_size_{k}) >= 0.
//
// Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
// this special case, step_size monotonically increases during bracketing.
if (!this->BracketingPhase(initial_position,
step_size_estimate,
&bracket_low,
&bracket_high,
&do_zoom_search,
summary)) {
// Failed to find either a valid point, a valid bracket satisfying the Wolfe
// conditions, or even a step size > minimum tolerance satisfying the Armijo
// condition.
return;
}
if (!do_zoom_search) {
// Either: Bracketing phase already found a point satisfying the strong
// Wolfe conditions, thus no Zoom required.
//
// Or: Bracketing failed to find a valid bracket or a point satisfying the
// strong Wolfe conditions within max_num_iterations, or whilst searching
// shrank the bracket width until it was below our minimum tolerance.
// As these are 'artificial' constraints, and we would otherwise fail to
// produce a valid point when ArmijoLineSearch would succeed, we return the
// point with the lowest cost found thus far which satsifies the Armijo
// condition (but not the Wolfe conditions).
summary->optimal_point = bracket_low;
summary->success = true;
return;
}
VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
<< "Starting line search zoom phase with bracket_low: " << bracket_low
<< ", bracket_high: " << bracket_high
<< ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
<< ", bracket abs delta cost: "
<< fabs(bracket_low.value - bracket_high.value);
// Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
// non-zero, finite width that should bracket step sizes which satisfy the
// (strong) Wolfe conditions (before finding a step size that satisfies the
// conditions). Zoom successively decreases the size of the interval until a
// step size which satisfies the Wolfe conditions is found. The interval is
// defined by bracket_low & bracket_high, which satisfy:
//
// 1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
// contains step sizes that satsify the strong Wolfe conditions.
// 2. bracket_low.x is of all the step sizes evaluated *which satisifed the
// Armijo sufficient decrease condition*, the one which generated the
// smallest function value, i.e. bracket_low.value <
// f(all other steps satisfying Armijo).
// - Note that this does _not_ (necessarily) mean that initially
// bracket_low.value < bracket_high.value (although this is typical)
// e.g. when bracket_low = initial_position, and bracket_high is the
// first sample, and which does not satisfy the Armijo condition,
// but still has bracket_high.value < initial_position.value.
// 3. bracket_high is chosen after bracket_low, s.t.
// bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
if (!this->ZoomPhase(
initial_position, bracket_low, bracket_high, &solution, summary) &&
!solution.value_is_valid) {
// Failed to find a valid point (given the specified decrease parameters)
// within the specified bracket.
return;
}
// Ensure that if we ran out of iterations whilst zooming the bracket, or
// shrank the bracket width to < tolerance and failed to find a point which
// satisfies the strong Wolfe curvature condition, that we return the point
// amongst those found thus far, which minimizes f() and satisfies the Armijo
// condition.
if (!solution.value_is_valid || solution.value > bracket_low.value) {
summary->optimal_point = bracket_low;
} else {
summary->optimal_point = solution;
}
summary->success = true;
}
// Returns true if either:
//
// A termination condition satisfying the (strong) Wolfe bracketing conditions
// is found:
//
// - A valid point, defined as a bracket of zero width [zoom not required].
// - A valid bracket (of width > tolerance), [zoom required].
//
// Or, searching was stopped due to an 'artificial' constraint, i.e. not
// a condition imposed / required by the underlying algorithm, but instead an
// engineering / implementation consideration. But a step which exceeds the
// minimum step size, and satsifies the Armijo condition was still found,
// and should thus be used [zoom not required].
//
// Returns false if no step size > minimum step size was found which
// satisfies at least the Armijo condition.
bool WolfeLineSearch::BracketingPhase(const FunctionSample& initial_position,
const double step_size_estimate,
FunctionSample* bracket_low,
FunctionSample* bracket_high,
bool* do_zoom_search,
Summary* summary) const {
LineSearchFunction* function = options().function;
FunctionSample previous = initial_position;
FunctionSample current;
const double descent_direction_max_norm = function->DirectionInfinityNorm();
*do_zoom_search = false;
*bracket_low = initial_position;
// As we require the gradient to evaluate the Wolfe condition, we always
// calculate it together with the value, irrespective of the interpolation
// type. As opposed to only calculating the gradient after the Armijo
// condition is satisifed, as the computational saving from this approach
// would be slight (perhaps even negative due to the extra call). Also,
// always calculating the value & gradient together protects against us
// reporting invalid solutions if the cost function returns slightly different
// function values when evaluated with / without gradients (due to numerical
// issues).
++summary->num_function_evaluations;
++summary->num_gradient_evaluations;
const bool kEvaluateGradient = true;
function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t);
while (true) {
++summary->num_iterations;
if (current.value_is_valid &&
(current.value > (initial_position.value +
options().sufficient_decrease *
initial_position.gradient * current.x) ||
(previous.value_is_valid && current.value > previous.value))) {
// Bracket found: current step size violates Armijo sufficient decrease
// condition, or has stepped past an inflection point of f() relative to
// previous step size.
*do_zoom_search = true;
*bracket_low = previous;
*bracket_high = current;
VLOG(3) << std::scientific
<< std::setprecision(kErrorMessageNumericPrecision)
<< "Bracket found: current step (" << current.x
<< ") violates Armijo sufficient condition, or has passed an "
<< "inflection point of f() based on value.";
break;
}
if (current.value_is_valid &&
fabs(current.gradient) <= -options().sufficient_curvature_decrease *
initial_position.gradient) {
// Current step size satisfies the strong Wolfe conditions, and is thus a
// valid termination point, therefore a Zoom not required.
*bracket_low = current;
*bracket_high = current;
VLOG(3) << std::scientific
<< std::setprecision(kErrorMessageNumericPrecision)
<< "Bracketing phase found step size: " << current.x
<< ", satisfying strong Wolfe conditions, initial_position: "
<< initial_position << ", current: " << current;
break;
} else if (current.value_is_valid && current.gradient >= 0) {
// Bracket found: current step size has stepped past an inflection point
// of f(), but Armijo sufficient decrease is still satisfied and
// f(current) is our best minimum thus far. Remember step size
// monotonically increases, thus previous_step_size < current_step_size
// even though f(previous) > f(current).
*do_zoom_search = true;
// Note inverse ordering from first bracket case.
*bracket_low = current;
*bracket_high = previous;
VLOG(3) << "Bracket found: current step (" << current.x
<< ") satisfies Armijo, but has gradient >= 0, thus have passed "
<< "an inflection point of f().";
break;
} else if (current.value_is_valid &&
fabs(current.x - previous.x) * descent_direction_max_norm <
options().min_step_size) {
// We have shrunk the search bracket to a width less than our tolerance,
// and still not found either a point satisfying the strong Wolfe
// conditions, or a valid bracket containing such a point. Stop searching
// and set bracket_low to the size size amongst all those tested which
// minimizes f() and satisfies the Armijo condition.
if (!options().is_silent) {
LOG(WARNING) << "Line search failed: Wolfe bracketing phase shrank "
<< "bracket width: " << fabs(current.x - previous.x)
<< ", to < tolerance: " << options().min_step_size
<< ", with descent_direction_max_norm: "
<< descent_direction_max_norm << ", and failed to find "
<< "a point satisfying the strong Wolfe conditions or a "
<< "bracketing containing such a point. Accepting "
<< "point found satisfying Armijo condition only, to "
<< "allow continuation.";
}
*bracket_low = current;
break;
} else if (summary->num_iterations >= options().max_num_iterations) {
// Check num iterations bound here so that we always evaluate the
// max_num_iterations-th iteration against all conditions, and
// then perform no additional (unused) evaluations.
summary->error = StringPrintf(
"Line search failed: Wolfe bracketing phase failed to "
"find a point satisfying strong Wolfe conditions, or a "
"bracket containing such a point within specified "
"max_num_iterations: %d",
options().max_num_iterations);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
// Ensure that bracket_low is always set to the step size amongst all
// those tested which minimizes f() and satisfies the Armijo condition
// when we terminate due to the 'artificial' max_num_iterations condition.
*bracket_low =
current.value_is_valid && current.value < bracket_low->value
? current
: *bracket_low;
break;
}
// Either: f(current) is invalid; or, f(current) is valid, but does not
// satisfy the strong Wolfe conditions itself, or the conditions for
// being a boundary of a bracket.
// If f(current) is valid, (but meets no criteria) expand the search by
// increasing the step size. If f(current) is invalid, contract the step
// size.
//
// In Nocedal & Wright [1] (p60), the step-size can only increase in the
// bracketing phase: step_size_{k+1} \in [step_size_k, step_size_k *
// factor]. However this does not account for the function returning invalid
// values which we support, in which case we need to contract the step size
// whilst ensuring that we do not invert the bracket, i.e, we require that:
// step_size_{k-1} <= step_size_{k+1} < step_size_k.
const double min_step_size =
current.value_is_valid ? current.x : previous.x;
const double max_step_size =
current.value_is_valid ? (current.x * options().max_step_expansion)
: current.x;
// We are performing 2-point interpolation only here, but the API of
// InterpolatingPolynomialMinimizingStepSize() allows for up to
// 3-point interpolation, so pad call with a sample with an invalid
// value that will therefore be ignored.
const FunctionSample unused_previous;
DCHECK(!unused_previous.value_is_valid);
// Contracts step size if f(current) is not valid.
const double polynomial_minimization_start_time = WallTimeInSeconds();
const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
options().interpolation_type,
previous,
unused_previous,
current,
min_step_size,
max_step_size);
summary->polynomial_minimization_time_in_seconds +=
(WallTimeInSeconds() - polynomial_minimization_start_time);
if (step_size * descent_direction_max_norm < options().min_step_size) {
summary->error = StringPrintf(
"Line search failed: step_size too small: %.5e "
"with descent_direction_max_norm: %.5e",
step_size,
descent_direction_max_norm);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return false;
}
// Only advance the lower boundary (in x) of the bracket if f(current)
// is valid such that we can support contracting the step size when
// f(current) is invalid without risking inverting the bracket in x, i.e.
// prevent previous.x > current.x.
previous = current.value_is_valid ? current : previous;
++summary->num_function_evaluations;
++summary->num_gradient_evaluations;
function->Evaluate(step_size, kEvaluateGradient, ¤t);
}
// Ensure that even if a valid bracket was found, we will only mark a zoom
// as required if the bracket's width is greater than our minimum tolerance.
if (*do_zoom_search &&
fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm <
options().min_step_size) {
*do_zoom_search = false;
}
return true;
}
// Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
// on return false, if we stopped searching due to the 'artificial' condition of
// reaching max_num_iterations, solution is the step size amongst all those
// tested, which satisfied the Armijo decrease condition and minimized f().
bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
FunctionSample bracket_low,
FunctionSample bracket_high,
FunctionSample* solution,
Summary* summary) const {
LineSearchFunction* function = options().function;
CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
<< "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
<< "the developers!, initial_position: " << initial_position
<< ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high;
// We do not require bracket_high.gradient_is_valid as the gradient condition
// for a valid bracket is only dependent upon bracket_low.gradient, and
// in order to minimize jacobian evaluations, bracket_high.gradient may
// not have been calculated (if bracket_high.value does not satisfy the
// Armijo sufficient decrease condition and interpolation method does not
// require it).
//
// We also do not require that: bracket_low.value < bracket_high.value,
// although this is typical. This is to deal with the case when
// bracket_low = initial_position, bracket_high is the first sample,
// and bracket_high does not satisfy the Armijo condition, but still has
// bracket_high.value < initial_position.value.
CHECK(bracket_high.value_is_valid)
<< std::scientific << std::setprecision(kErrorMessageNumericPrecision)
<< "Ceres bug: f_high input to Wolfe Zoom invalid, please "
<< "contact the developers!, initial_position: " << initial_position
<< ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high;
if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
// The third condition for a valid initial bracket:
//
// 3. bracket_high is chosen after bracket_low, s.t.
// bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
//
// is not satisfied. As this can happen when the users' cost function
// returns inconsistent gradient values relative to the function values,
// we do not CHECK_LT(), but we do stop processing and return an invalid
// value.
summary->error = StringPrintf(
"Line search failed: Wolfe zoom phase passed a bracket "
"which does not satisfy: bracket_low.gradient * "
"(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
"with initial_position: %s, bracket_low: %s, bracket_high:"
" %s, the most likely cause of which is the cost function "
"returning inconsistent gradient & function values.",
bracket_low.gradient * (bracket_high.x - bracket_low.x),
initial_position.ToDebugString().c_str(),
bracket_low.ToDebugString().c_str(),
bracket_high.ToDebugString().c_str());
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
solution->value_is_valid = false;
return false;
}
const int num_bracketing_iterations = summary->num_iterations;
const double descent_direction_max_norm = function->DirectionInfinityNorm();
while (true) {
// Set solution to bracket_low, as it is our best step size (smallest f())
// found thus far and satisfies the Armijo condition, even though it does
// not satisfy the Wolfe condition.
*solution = bracket_low;
if (summary->num_iterations >= options().max_num_iterations) {
summary->error = StringPrintf(
"Line search failed: Wolfe zoom phase failed to "
"find a point satisfying strong Wolfe conditions "
"within specified max_num_iterations: %d, "
"(num iterations taken for bracketing: %d).",
options().max_num_iterations,
num_bracketing_iterations);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return false;
}
if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm <
options().min_step_size) {
// Bracket width has been reduced below tolerance, and no point satisfying
// the strong Wolfe conditions has been found.
summary->error = StringPrintf(
"Line search failed: Wolfe zoom bracket width: %.5e "
"too small with descent_direction_max_norm: %.5e.",
fabs(bracket_high.x - bracket_low.x),
descent_direction_max_norm);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return false;
}
++summary->num_iterations;
// Polynomial interpolation requires inputs ordered according to step size,
// not f(step size).
const FunctionSample& lower_bound_step =
bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
const FunctionSample& upper_bound_step =
bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
// We are performing 2-point interpolation only here, but the API of
// InterpolatingPolynomialMinimizingStepSize() allows for up to
// 3-point interpolation, so pad call with a sample with an invalid
// value that will therefore be ignored.
const FunctionSample unused_previous;
DCHECK(!unused_previous.value_is_valid);
const double polynomial_minimization_start_time = WallTimeInSeconds();
const double step_size = this->InterpolatingPolynomialMinimizingStepSize(
options().interpolation_type,
lower_bound_step,
unused_previous,
upper_bound_step,
lower_bound_step.x,
upper_bound_step.x);
summary->polynomial_minimization_time_in_seconds +=
(WallTimeInSeconds() - polynomial_minimization_start_time);
// No check on magnitude of step size being too small here as it is
// lower-bounded by the initial bracket start point, which was valid.
//
// As we require the gradient to evaluate the Wolfe condition, we always
// calculate it together with the value, irrespective of the interpolation
// type. As opposed to only calculating the gradient after the Armijo
// condition is satisifed, as the computational saving from this approach
// would be slight (perhaps even negative due to the extra call). Also,
// always calculating the value & gradient together protects against us
// reporting invalid solutions if the cost function returns slightly
// different function values when evaluated with / without gradients (due
// to numerical issues).
++summary->num_function_evaluations;
++summary->num_gradient_evaluations;
const bool kEvaluateGradient = true;
function->Evaluate(step_size, kEvaluateGradient, solution);
if (!solution->value_is_valid || !solution->gradient_is_valid) {
summary->error = StringPrintf(
"Line search failed: Wolfe Zoom phase found "
"step_size: %.5e, for which function is invalid, "
"between low_step: %.5e and high_step: %.5e "
"at which function is valid.",
solution->x,
bracket_low.x,
bracket_high.x);
if (!options().is_silent) {
LOG(WARNING) << summary->error;
}
return false;
}
VLOG(3) << "Zoom iteration: "
<< summary->num_iterations - num_bracketing_iterations
<< ", bracket_low: " << bracket_low
<< ", bracket_high: " << bracket_high
<< ", minimizing solution: " << *solution;
if ((solution->value > (initial_position.value +
options().sufficient_decrease *
initial_position.gradient * solution->x)) ||
(solution->value >= bracket_low.value)) {
// Armijo sufficient decrease not satisfied, or not better
// than current lowest sample, use as new upper bound.
bracket_high = *solution;
continue;
}
// Armijo sufficient decrease satisfied, check strong Wolfe condition.
if (fabs(solution->gradient) <=
-options().sufficient_curvature_decrease * initial_position.gradient) {
// Found a valid termination point satisfying strong Wolfe conditions.
VLOG(3) << std::scientific
<< std::setprecision(kErrorMessageNumericPrecision)
<< "Zoom phase found step size: " << solution->x
<< ", satisfying strong Wolfe conditions.";
break;
} else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
bracket_high = bracket_low;
}
bracket_low = *solution;
}
// Solution contains a valid point which satisfies the strong Wolfe
// conditions.
return true;
}
} // namespace internal
} // namespace ceres
|