1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// Generic loop for line search based optimization algorithms.
//
// This is primarily inpsired by the minFunc packaged written by Mark
// Schmidt.
//
// http://www.di.ens.fr/~mschmidt/Software/minFunc.html
//
// For details on the theory and implementation see "Numerical
// Optimization" by Nocedal & Wright.
#include "ceres/line_search_minimizer.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <memory>
#include <string>
#include <vector>
#include "Eigen/Dense"
#include "ceres/array_utils.h"
#include "ceres/evaluator.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/export.h"
#include "ceres/line_search.h"
#include "ceres/line_search_direction.h"
#include "ceres/stringprintf.h"
#include "ceres/types.h"
#include "ceres/wall_time.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
namespace {
bool EvaluateGradientNorms(Evaluator* evaluator,
const Vector& x,
LineSearchMinimizer::State* state,
std::string* message) {
Vector negative_gradient = -state->gradient;
Vector projected_gradient_step(x.size());
if (!evaluator->Plus(
x.data(), negative_gradient.data(), projected_gradient_step.data())) {
*message = "projected_gradient_step = Plus(x, -gradient) failed.";
return false;
}
state->gradient_squared_norm = (x - projected_gradient_step).squaredNorm();
state->gradient_max_norm =
(x - projected_gradient_step).lpNorm<Eigen::Infinity>();
return true;
}
} // namespace
void LineSearchMinimizer::Minimize(const Minimizer::Options& options,
double* parameters,
Solver::Summary* summary) {
const bool is_not_silent = !options.is_silent;
double start_time = WallTimeInSeconds();
double iteration_start_time = start_time;
CHECK(options.evaluator != nullptr);
Evaluator* evaluator = options.evaluator.get();
const int num_parameters = evaluator->NumParameters();
const int num_effective_parameters = evaluator->NumEffectiveParameters();
summary->termination_type = NO_CONVERGENCE;
summary->num_successful_steps = 0;
summary->num_unsuccessful_steps = 0;
VectorRef x(parameters, num_parameters);
State current_state(num_parameters, num_effective_parameters);
State previous_state(num_parameters, num_effective_parameters);
IterationSummary iteration_summary;
iteration_summary.iteration = 0;
iteration_summary.step_is_valid = false;
iteration_summary.step_is_successful = false;
iteration_summary.cost_change = 0.0;
iteration_summary.gradient_max_norm = 0.0;
iteration_summary.gradient_norm = 0.0;
iteration_summary.step_norm = 0.0;
iteration_summary.linear_solver_iterations = 0;
iteration_summary.step_solver_time_in_seconds = 0;
// Do initial cost and gradient evaluation.
if (!evaluator->Evaluate(x.data(),
&(current_state.cost),
nullptr,
current_state.gradient.data(),
nullptr)) {
summary->termination_type = FAILURE;
summary->message = "Initial cost and jacobian evaluation failed.";
if (is_not_silent) {
LOG(WARNING) << "Terminating: " << summary->message;
}
return;
}
if (!EvaluateGradientNorms(evaluator, x, ¤t_state, &summary->message)) {
summary->termination_type = FAILURE;
summary->message =
"Initial cost and jacobian evaluation failed. More details: " +
summary->message;
if (is_not_silent) {
LOG(WARNING) << "Terminating: " << summary->message;
}
return;
}
summary->initial_cost = current_state.cost + summary->fixed_cost;
iteration_summary.cost = current_state.cost + summary->fixed_cost;
iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);
iteration_summary.gradient_max_norm = current_state.gradient_max_norm;
if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {
summary->message =
StringPrintf("Gradient tolerance reached. Gradient max norm: %e <= %e",
iteration_summary.gradient_max_norm,
options.gradient_tolerance);
summary->termination_type = CONVERGENCE;
if (is_not_silent) {
VLOG(1) << "Terminating: " << summary->message;
}
return;
}
iteration_summary.iteration_time_in_seconds =
WallTimeInSeconds() - iteration_start_time;
iteration_summary.cumulative_time_in_seconds =
WallTimeInSeconds() - start_time + summary->preprocessor_time_in_seconds;
summary->iterations.push_back(iteration_summary);
LineSearchDirection::Options line_search_direction_options;
line_search_direction_options.num_parameters = num_effective_parameters;
line_search_direction_options.type = options.line_search_direction_type;
line_search_direction_options.nonlinear_conjugate_gradient_type =
options.nonlinear_conjugate_gradient_type;
line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank;
line_search_direction_options.use_approximate_eigenvalue_bfgs_scaling =
options.use_approximate_eigenvalue_bfgs_scaling;
std::unique_ptr<LineSearchDirection> line_search_direction =
LineSearchDirection::Create(line_search_direction_options);
LineSearchFunction line_search_function(evaluator);
LineSearch::Options line_search_options;
line_search_options.interpolation_type =
options.line_search_interpolation_type;
line_search_options.min_step_size = options.min_line_search_step_size;
line_search_options.sufficient_decrease =
options.line_search_sufficient_function_decrease;
line_search_options.max_step_contraction =
options.max_line_search_step_contraction;
line_search_options.min_step_contraction =
options.min_line_search_step_contraction;
line_search_options.max_num_iterations =
options.max_num_line_search_step_size_iterations;
line_search_options.sufficient_curvature_decrease =
options.line_search_sufficient_curvature_decrease;
line_search_options.max_step_expansion =
options.max_line_search_step_expansion;
line_search_options.is_silent = options.is_silent;
line_search_options.function = &line_search_function;
std::unique_ptr<LineSearch> line_search(LineSearch::Create(
options.line_search_type, line_search_options, &summary->message));
if (line_search.get() == nullptr) {
summary->termination_type = FAILURE;
if (is_not_silent) {
LOG(ERROR) << "Terminating: " << summary->message;
}
return;
}
LineSearch::Summary line_search_summary;
int num_line_search_direction_restarts = 0;
while (true) {
if (!RunCallbacks(options, iteration_summary, summary)) {
break;
}
iteration_start_time = WallTimeInSeconds();
if (iteration_summary.iteration >= options.max_num_iterations) {
summary->message = "Maximum number of iterations reached.";
summary->termination_type = NO_CONVERGENCE;
if (is_not_silent) {
VLOG(1) << "Terminating: " << summary->message;
}
break;
}
const double total_solver_time = iteration_start_time - start_time +
summary->preprocessor_time_in_seconds;
if (total_solver_time >= options.max_solver_time_in_seconds) {
summary->message = "Maximum solver time reached.";
summary->termination_type = NO_CONVERGENCE;
if (is_not_silent) {
VLOG(1) << "Terminating: " << summary->message;
}
break;
}
iteration_summary = IterationSummary();
iteration_summary.iteration = summary->iterations.back().iteration + 1;
iteration_summary.step_is_valid = false;
iteration_summary.step_is_successful = false;
bool line_search_status = true;
if (iteration_summary.iteration == 1) {
current_state.search_direction = -current_state.gradient;
} else {
line_search_status = line_search_direction->NextDirection(
previous_state, current_state, ¤t_state.search_direction);
}
if (!line_search_status &&
num_line_search_direction_restarts >=
options.max_num_line_search_direction_restarts) {
// Line search direction failed to generate a new direction, and we
// have already reached our specified maximum number of restarts,
// terminate optimization.
summary->message = StringPrintf(
"Line search direction failure: specified "
"max_num_line_search_direction_restarts: %d reached.",
options.max_num_line_search_direction_restarts);
summary->termination_type = FAILURE;
if (is_not_silent) {
LOG(WARNING) << "Terminating: " << summary->message;
}
break;
} else if (!line_search_status) {
// Restart line search direction with gradient descent on first iteration
// as we have not yet reached our maximum number of restarts.
CHECK_LT(num_line_search_direction_restarts,
options.max_num_line_search_direction_restarts);
++num_line_search_direction_restarts;
if (is_not_silent) {
LOG(WARNING) << "Line search direction algorithm: "
<< LineSearchDirectionTypeToString(
options.line_search_direction_type)
<< ", failed to produce a valid new direction at "
<< "iteration: " << iteration_summary.iteration
<< ". Restarting, number of restarts: "
<< num_line_search_direction_restarts << " / "
<< options.max_num_line_search_direction_restarts
<< " [max].";
}
line_search_direction =
LineSearchDirection::Create(line_search_direction_options);
current_state.search_direction = -current_state.gradient;
}
line_search_function.Init(x, current_state.search_direction);
current_state.directional_derivative =
current_state.gradient.dot(current_state.search_direction);
// TODO(sameeragarwal): Refactor this into its own object and add
// explanations for the various choices.
//
// Note that we use !line_search_status to ensure that we treat cases when
// we restarted the line search direction equivalently to the first
// iteration.
const double initial_step_size =
(iteration_summary.iteration == 1 || !line_search_status)
? std::min(1.0, 1.0 / current_state.gradient_max_norm)
: std::min(1.0,
2.0 * (current_state.cost - previous_state.cost) /
current_state.directional_derivative);
// By definition, we should only ever go forwards along the specified search
// direction in a line search, most likely cause for this being violated
// would be a numerical failure in the line search direction calculation.
if (initial_step_size < 0.0) {
summary->message = StringPrintf(
"Numerical failure in line search, initial_step_size is "
"negative: %.5e, directional_derivative: %.5e, "
"(current_cost - previous_cost): %.5e",
initial_step_size,
current_state.directional_derivative,
(current_state.cost - previous_state.cost));
summary->termination_type = FAILURE;
if (is_not_silent) {
LOG(WARNING) << "Terminating: " << summary->message;
}
break;
}
line_search->Search(initial_step_size,
current_state.cost,
current_state.directional_derivative,
&line_search_summary);
if (!line_search_summary.success) {
summary->message = StringPrintf(
"Numerical failure in line search, failed to find "
"a valid step size, (did not run out of iterations) "
"using initial_step_size: %.5e, initial_cost: %.5e, "
"initial_gradient: %.5e.",
initial_step_size,
current_state.cost,
current_state.directional_derivative);
if (is_not_silent) {
LOG(WARNING) << "Terminating: " << summary->message;
}
summary->termination_type = FAILURE;
break;
}
const FunctionSample& optimal_point = line_search_summary.optimal_point;
CHECK(optimal_point.vector_x_is_valid)
<< "Congratulations, you found a bug in Ceres. Please report it.";
current_state.step_size = optimal_point.x;
previous_state = current_state;
iteration_summary.step_solver_time_in_seconds =
WallTimeInSeconds() - iteration_start_time;
if (optimal_point.vector_gradient_is_valid) {
current_state.cost = optimal_point.value;
current_state.gradient = optimal_point.vector_gradient;
} else {
Evaluator::EvaluateOptions evaluate_options;
evaluate_options.new_evaluation_point = false;
if (!evaluator->Evaluate(evaluate_options,
optimal_point.vector_x.data(),
&(current_state.cost),
nullptr,
current_state.gradient.data(),
nullptr)) {
summary->termination_type = FAILURE;
summary->message = "Cost and jacobian evaluation failed.";
if (is_not_silent) {
LOG(WARNING) << "Terminating: " << summary->message;
}
return;
}
}
if (!EvaluateGradientNorms(evaluator,
optimal_point.vector_x,
¤t_state,
&summary->message)) {
summary->termination_type = FAILURE;
summary->message =
"Step failed to evaluate. This should not happen as the step was "
"valid when it was selected by the line search. More details: " +
summary->message;
if (is_not_silent) {
LOG(WARNING) << "Terminating: " << summary->message;
}
break;
}
// Compute the norm of the step in the ambient space.
iteration_summary.step_norm = (optimal_point.vector_x - x).norm();
const double x_norm = x.norm();
x = optimal_point.vector_x;
iteration_summary.gradient_max_norm = current_state.gradient_max_norm;
iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);
iteration_summary.cost_change = previous_state.cost - current_state.cost;
iteration_summary.cost = current_state.cost + summary->fixed_cost;
iteration_summary.step_is_valid = true;
iteration_summary.step_is_successful = true;
iteration_summary.step_size = current_state.step_size;
iteration_summary.line_search_function_evaluations =
line_search_summary.num_function_evaluations;
iteration_summary.line_search_gradient_evaluations =
line_search_summary.num_gradient_evaluations;
iteration_summary.line_search_iterations =
line_search_summary.num_iterations;
iteration_summary.iteration_time_in_seconds =
WallTimeInSeconds() - iteration_start_time;
iteration_summary.cumulative_time_in_seconds =
WallTimeInSeconds() - start_time +
summary->preprocessor_time_in_seconds;
summary->iterations.push_back(iteration_summary);
// Iterations inside the line search algorithm are considered
// 'steps' in the broader context, to distinguish these inner
// iterations from from the outer iterations of the line search
// minimizer. The number of line search steps is the total number
// of inner line search iterations (or steps) across the entire
// minimization.
summary->num_line_search_steps += line_search_summary.num_iterations;
summary->line_search_cost_evaluation_time_in_seconds +=
line_search_summary.cost_evaluation_time_in_seconds;
summary->line_search_gradient_evaluation_time_in_seconds +=
line_search_summary.gradient_evaluation_time_in_seconds;
summary->line_search_polynomial_minimization_time_in_seconds +=
line_search_summary.polynomial_minimization_time_in_seconds;
summary->line_search_total_time_in_seconds +=
line_search_summary.total_time_in_seconds;
++summary->num_successful_steps;
const double step_size_tolerance =
options.parameter_tolerance * (x_norm + options.parameter_tolerance);
if (iteration_summary.step_norm <= step_size_tolerance) {
summary->message = StringPrintf(
"Parameter tolerance reached. "
"Relative step_norm: %e <= %e.",
(iteration_summary.step_norm /
(x_norm + options.parameter_tolerance)),
options.parameter_tolerance);
summary->termination_type = CONVERGENCE;
if (is_not_silent) {
VLOG(1) << "Terminating: " << summary->message;
}
return;
}
if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {
summary->message = StringPrintf(
"Gradient tolerance reached. "
"Gradient max norm: %e <= %e",
iteration_summary.gradient_max_norm,
options.gradient_tolerance);
summary->termination_type = CONVERGENCE;
if (is_not_silent) {
VLOG(1) << "Terminating: " << summary->message;
}
break;
}
const double absolute_function_tolerance =
options.function_tolerance * std::abs(previous_state.cost);
if (std::abs(iteration_summary.cost_change) <=
absolute_function_tolerance) {
summary->message = StringPrintf(
"Function tolerance reached. "
"|cost_change|/cost: %e <= %e",
std::abs(iteration_summary.cost_change) / previous_state.cost,
options.function_tolerance);
summary->termination_type = CONVERGENCE;
if (is_not_silent) {
VLOG(1) << "Terminating: " << summary->message;
}
break;
}
}
}
} // namespace internal
} // namespace ceres
|