1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
#include "ceres/manifold.h"
#include <algorithm>
#include <cmath>
#include "ceres/internal/eigen.h"
#include "ceres/internal/fixed_array.h"
#include "glog/logging.h"
namespace ceres {
namespace {
struct CeresQuaternionOrder {
static constexpr int kW = 0;
static constexpr int kX = 1;
static constexpr int kY = 2;
static constexpr int kZ = 3;
};
struct EigenQuaternionOrder {
static constexpr int kW = 3;
static constexpr int kX = 0;
static constexpr int kY = 1;
static constexpr int kZ = 2;
};
template <typename Order>
inline void QuaternionPlusImpl(const double* x,
const double* delta,
double* x_plus_delta) {
// x_plus_delta = QuaternionProduct(q_delta, x), where q_delta is the
// quaternion constructed from delta.
const double norm_delta = std::sqrt(
delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]);
if (norm_delta == 0.0) {
for (int i = 0; i < 4; ++i) {
x_plus_delta[i] = x[i];
}
return;
}
const double sin_delta_by_delta = (std::sin(norm_delta) / norm_delta);
double q_delta[4];
q_delta[Order::kW] = std::cos(norm_delta);
q_delta[Order::kX] = sin_delta_by_delta * delta[0];
q_delta[Order::kY] = sin_delta_by_delta * delta[1];
q_delta[Order::kZ] = sin_delta_by_delta * delta[2];
x_plus_delta[Order::kW] =
q_delta[Order::kW] * x[Order::kW] - q_delta[Order::kX] * x[Order::kX] -
q_delta[Order::kY] * x[Order::kY] - q_delta[Order::kZ] * x[Order::kZ];
x_plus_delta[Order::kX] =
q_delta[Order::kW] * x[Order::kX] + q_delta[Order::kX] * x[Order::kW] +
q_delta[Order::kY] * x[Order::kZ] - q_delta[Order::kZ] * x[Order::kY];
x_plus_delta[Order::kY] =
q_delta[Order::kW] * x[Order::kY] - q_delta[Order::kX] * x[Order::kZ] +
q_delta[Order::kY] * x[Order::kW] + q_delta[Order::kZ] * x[Order::kX];
x_plus_delta[Order::kZ] =
q_delta[Order::kW] * x[Order::kZ] + q_delta[Order::kX] * x[Order::kY] -
q_delta[Order::kY] * x[Order::kX] + q_delta[Order::kZ] * x[Order::kW];
}
template <typename Order>
inline void QuaternionPlusJacobianImpl(const double* x, double* jacobian_ptr) {
Eigen::Map<Eigen::Matrix<double, 4, 3, Eigen::RowMajor>> jacobian(
jacobian_ptr);
jacobian(Order::kW, 0) = -x[Order::kX];
jacobian(Order::kW, 1) = -x[Order::kY];
jacobian(Order::kW, 2) = -x[Order::kZ];
jacobian(Order::kX, 0) = x[Order::kW];
jacobian(Order::kX, 1) = x[Order::kZ];
jacobian(Order::kX, 2) = -x[Order::kY];
jacobian(Order::kY, 0) = -x[Order::kZ];
jacobian(Order::kY, 1) = x[Order::kW];
jacobian(Order::kY, 2) = x[Order::kX];
jacobian(Order::kZ, 0) = x[Order::kY];
jacobian(Order::kZ, 1) = -x[Order::kX];
jacobian(Order::kZ, 2) = x[Order::kW];
}
template <typename Order>
inline void QuaternionMinusImpl(const double* y,
const double* x,
double* y_minus_x) {
// ambient_y_minus_x = QuaternionProduct(y, -x) where -x is the conjugate of
// x.
double ambient_y_minus_x[4];
ambient_y_minus_x[Order::kW] =
y[Order::kW] * x[Order::kW] + y[Order::kX] * x[Order::kX] +
y[Order::kY] * x[Order::kY] + y[Order::kZ] * x[Order::kZ];
ambient_y_minus_x[Order::kX] =
-y[Order::kW] * x[Order::kX] + y[Order::kX] * x[Order::kW] -
y[Order::kY] * x[Order::kZ] + y[Order::kZ] * x[Order::kY];
ambient_y_minus_x[Order::kY] =
-y[Order::kW] * x[Order::kY] + y[Order::kX] * x[Order::kZ] +
y[Order::kY] * x[Order::kW] - y[Order::kZ] * x[Order::kX];
ambient_y_minus_x[Order::kZ] =
-y[Order::kW] * x[Order::kZ] - y[Order::kX] * x[Order::kY] +
y[Order::kY] * x[Order::kX] + y[Order::kZ] * x[Order::kW];
const double u_norm =
std::sqrt(ambient_y_minus_x[Order::kX] * ambient_y_minus_x[Order::kX] +
ambient_y_minus_x[Order::kY] * ambient_y_minus_x[Order::kY] +
ambient_y_minus_x[Order::kZ] * ambient_y_minus_x[Order::kZ]);
if (u_norm > 0.0) {
const double theta = std::atan2(u_norm, ambient_y_minus_x[Order::kW]);
y_minus_x[0] = theta * ambient_y_minus_x[Order::kX] / u_norm;
y_minus_x[1] = theta * ambient_y_minus_x[Order::kY] / u_norm;
y_minus_x[2] = theta * ambient_y_minus_x[Order::kZ] / u_norm;
} else {
y_minus_x[0] = 0.0;
y_minus_x[1] = 0.0;
y_minus_x[2] = 0.0;
}
}
template <typename Order>
inline void QuaternionMinusJacobianImpl(const double* x, double* jacobian_ptr) {
Eigen::Map<Eigen::Matrix<double, 3, 4, Eigen::RowMajor>> jacobian(
jacobian_ptr);
jacobian(0, Order::kW) = -x[Order::kX];
jacobian(0, Order::kX) = x[Order::kW];
jacobian(0, Order::kY) = -x[Order::kZ];
jacobian(0, Order::kZ) = x[Order::kY];
jacobian(1, Order::kW) = -x[Order::kY];
jacobian(1, Order::kX) = x[Order::kZ];
jacobian(1, Order::kY) = x[Order::kW];
jacobian(1, Order::kZ) = -x[Order::kX];
jacobian(2, Order::kW) = -x[Order::kZ];
jacobian(2, Order::kX) = -x[Order::kY];
jacobian(2, Order::kY) = x[Order::kX];
jacobian(2, Order::kZ) = x[Order::kW];
}
} // namespace
Manifold::~Manifold() = default;
bool Manifold::RightMultiplyByPlusJacobian(const double* x,
const int num_rows,
const double* ambient_matrix,
double* tangent_matrix) const {
const int tangent_size = TangentSize();
if (tangent_size == 0) {
return true;
}
const int ambient_size = AmbientSize();
Matrix plus_jacobian(ambient_size, tangent_size);
if (!PlusJacobian(x, plus_jacobian.data())) {
return false;
}
MatrixRef(tangent_matrix, num_rows, tangent_size) =
ConstMatrixRef(ambient_matrix, num_rows, ambient_size) * plus_jacobian;
return true;
}
SubsetManifold::SubsetManifold(const int size,
const std::vector<int>& constant_parameters)
: tangent_size_(size - constant_parameters.size()),
constancy_mask_(size, false) {
if (constant_parameters.empty()) {
return;
}
std::vector<int> constant = constant_parameters;
std::sort(constant.begin(), constant.end());
CHECK_GE(constant.front(), 0) << "Indices indicating constant parameter must "
"be greater than equal to zero.";
CHECK_LT(constant.back(), size)
<< "Indices indicating constant parameter must be less than the size "
<< "of the parameter block.";
CHECK(std::adjacent_find(constant.begin(), constant.end()) == constant.end())
<< "The set of constant parameters cannot contain duplicates";
for (auto index : constant_parameters) {
constancy_mask_[index] = true;
}
}
int SubsetManifold::AmbientSize() const { return constancy_mask_.size(); }
int SubsetManifold::TangentSize() const { return tangent_size_; }
bool SubsetManifold::Plus(const double* x,
const double* delta,
double* x_plus_delta) const {
const int ambient_size = AmbientSize();
for (int i = 0, j = 0; i < ambient_size; ++i) {
if (constancy_mask_[i]) {
x_plus_delta[i] = x[i];
} else {
x_plus_delta[i] = x[i] + delta[j++];
}
}
return true;
}
bool SubsetManifold::PlusJacobian(const double* x,
double* plus_jacobian) const {
if (tangent_size_ == 0) {
return true;
}
const int ambient_size = AmbientSize();
MatrixRef m(plus_jacobian, ambient_size, tangent_size_);
m.setZero();
for (int r = 0, c = 0; r < ambient_size; ++r) {
if (!constancy_mask_[r]) {
m(r, c++) = 1.0;
}
}
return true;
}
bool SubsetManifold::RightMultiplyByPlusJacobian(const double* x,
const int num_rows,
const double* ambient_matrix,
double* tangent_matrix) const {
if (tangent_size_ == 0) {
return true;
}
const int ambient_size = AmbientSize();
for (int r = 0; r < num_rows; ++r) {
for (int idx = 0, c = 0; idx < ambient_size; ++idx) {
if (!constancy_mask_[idx]) {
tangent_matrix[r * tangent_size_ + c++] =
ambient_matrix[r * ambient_size + idx];
}
}
}
return true;
}
bool SubsetManifold::Minus(const double* y,
const double* x,
double* y_minus_x) const {
if (tangent_size_ == 0) {
return true;
}
const int ambient_size = AmbientSize();
for (int i = 0, j = 0; i < ambient_size; ++i) {
if (!constancy_mask_[i]) {
y_minus_x[j++] = y[i] - x[i];
}
}
return true;
}
bool SubsetManifold::MinusJacobian(const double* x,
double* minus_jacobian) const {
const int ambient_size = AmbientSize();
MatrixRef m(minus_jacobian, tangent_size_, ambient_size);
m.setZero();
for (int c = 0, r = 0; c < ambient_size; ++c) {
if (!constancy_mask_[c]) {
m(r++, c) = 1.0;
}
}
return true;
}
bool QuaternionManifold::Plus(const double* x,
const double* delta,
double* x_plus_delta) const {
QuaternionPlusImpl<CeresQuaternionOrder>(x, delta, x_plus_delta);
return true;
}
bool QuaternionManifold::PlusJacobian(const double* x, double* jacobian) const {
QuaternionPlusJacobianImpl<CeresQuaternionOrder>(x, jacobian);
return true;
}
bool QuaternionManifold::Minus(const double* y,
const double* x,
double* y_minus_x) const {
QuaternionMinusImpl<CeresQuaternionOrder>(y, x, y_minus_x);
return true;
}
bool QuaternionManifold::MinusJacobian(const double* x,
double* jacobian) const {
QuaternionMinusJacobianImpl<CeresQuaternionOrder>(x, jacobian);
return true;
}
bool EigenQuaternionManifold::Plus(const double* x,
const double* delta,
double* x_plus_delta) const {
QuaternionPlusImpl<EigenQuaternionOrder>(x, delta, x_plus_delta);
return true;
}
bool EigenQuaternionManifold::PlusJacobian(const double* x,
double* jacobian) const {
QuaternionPlusJacobianImpl<EigenQuaternionOrder>(x, jacobian);
return true;
}
bool EigenQuaternionManifold::Minus(const double* y,
const double* x,
double* y_minus_x) const {
QuaternionMinusImpl<EigenQuaternionOrder>(y, x, y_minus_x);
return true;
}
bool EigenQuaternionManifold::MinusJacobian(const double* x,
double* jacobian) const {
QuaternionMinusJacobianImpl<EigenQuaternionOrder>(x, jacobian);
return true;
}
} // namespace ceres
|