File: numeric_diff_test_utils.h

package info (click to toggle)
ceres-solver 2.1.0%2Breally2.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,656 kB
  • sloc: cpp: 80,895; ansic: 2,869; python: 679; sh: 78; makefile: 74; xml: 21
file content (150 lines) | stat: -rw-r--r-- 5,411 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#ifndef CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_
#define CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_

#include "ceres/cost_function.h"
#include "ceres/internal/export.h"
#include "ceres/sized_cost_function.h"
#include "ceres/types.h"

namespace ceres {
namespace internal {

// Noise factor for randomized cost function.
static constexpr double kNoiseFactor = 0.01;

// Default random seed for randomized cost function.
static constexpr unsigned int kRandomSeed = 1234;

// y1 = x1'x2      -> dy1/dx1 = x2,               dy1/dx2 = x1
// y2 = (x1'x2)^2  -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2)
// y3 = x2'x2      -> dy3/dx1 = 0,                dy3/dx2 = 2 * x2
class CERES_NO_EXPORT EasyFunctor {
 public:
  bool operator()(const double* x1, const double* x2, double* residuals) const;
  void ExpectCostFunctionEvaluationIsNearlyCorrect(
      const CostFunction& cost_function, NumericDiffMethodType method) const;
};

class EasyCostFunction : public SizedCostFunction<3, 5, 5> {
 public:
  bool Evaluate(double const* const* parameters,
                double* residuals,
                double** /* not used */) const final {
    return functor_(parameters[0], parameters[1], residuals);
  }

 private:
  EasyFunctor functor_;
};

// y1 = sin(x1'x2)
// y2 = exp(-x1'x2 / 10)
//
// dy1/dx1 =  x2 * cos(x1'x2),            dy1/dx2 =  x1 * cos(x1'x2)
// dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10
class CERES_NO_EXPORT TranscendentalFunctor {
 public:
  bool operator()(const double* x1, const double* x2, double* residuals) const;
  void ExpectCostFunctionEvaluationIsNearlyCorrect(
      const CostFunction& cost_function, NumericDiffMethodType method) const;
};

class CERES_NO_EXPORT TranscendentalCostFunction
    : public SizedCostFunction<2, 5, 5> {
 public:
  bool Evaluate(double const* const* parameters,
                double* residuals,
                double** /* not used */) const final {
    return functor_(parameters[0], parameters[1], residuals);
  }

 private:
  TranscendentalFunctor functor_;
};

// y = exp(x), dy/dx = exp(x)
class CERES_NO_EXPORT ExponentialFunctor {
 public:
  bool operator()(const double* x1, double* residuals) const;
  void ExpectCostFunctionEvaluationIsNearlyCorrect(
      const CostFunction& cost_function) const;
};

class ExponentialCostFunction : public SizedCostFunction<1, 1> {
 public:
  bool Evaluate(double const* const* parameters,
                double* residuals,
                double** /* not used */) const final {
    return functor_(parameters[0], residuals);
  }

 private:
  ExponentialFunctor functor_;
};

// Test adaptive numeric differentiation by synthetically adding random noise
// to a functor.
// y = x^2 + [random noise], dy/dx ~ 2x
class CERES_NO_EXPORT RandomizedFunctor {
 public:
  RandomizedFunctor(double noise_factor, unsigned int random_seed)
      : noise_factor_(noise_factor), random_seed_(random_seed) {}

  bool operator()(const double* x1, double* residuals) const;
  void ExpectCostFunctionEvaluationIsNearlyCorrect(
      const CostFunction& cost_function) const;

 private:
  double noise_factor_;
  unsigned int random_seed_;
};

class CERES_NO_EXPORT RandomizedCostFunction : public SizedCostFunction<1, 1> {
 public:
  RandomizedCostFunction(double noise_factor, unsigned int random_seed)
      : functor_(noise_factor, random_seed) {}

  bool Evaluate(double const* const* parameters,
                double* residuals,
                double** /* not used */) const final {
    return functor_(parameters[0], residuals);
  }

 private:
  RandomizedFunctor functor_;
};

}  // namespace internal
}  // namespace ceres

#endif  // CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_