1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include <algorithm>
#include <cstring>
#include <memory>
#include <vector>
#include "ceres/block_sparse_matrix.h"
#include "ceres/block_structure.h"
#include "ceres/internal/eigen.h"
#include "ceres/partitioned_matrix_view.h"
#include "ceres/small_blas.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
PartitionedMatrixView(const BlockSparseMatrix& matrix, int num_col_blocks_e)
: matrix_(matrix), num_col_blocks_e_(num_col_blocks_e) {
const CompressedRowBlockStructure* bs = matrix_.block_structure();
CHECK(bs != nullptr);
num_col_blocks_f_ = bs->cols.size() - num_col_blocks_e_;
// Compute the number of row blocks in E. The number of row blocks
// in E maybe less than the number of row blocks in the input matrix
// as some of the row blocks at the bottom may not have any
// e_blocks. For a definition of what an e_block is, please see
// explicit_schur_complement_solver.h
num_row_blocks_e_ = 0;
for (const auto& row : bs->rows) {
const std::vector<Cell>& cells = row.cells;
if (cells[0].block_id < num_col_blocks_e_) {
++num_row_blocks_e_;
}
}
// Compute the number of columns in E and F.
num_cols_e_ = 0;
num_cols_f_ = 0;
for (int c = 0; c < bs->cols.size(); ++c) {
const Block& block = bs->cols[c];
if (c < num_col_blocks_e_) {
num_cols_e_ += block.size;
} else {
num_cols_f_ += block.size;
}
}
CHECK_EQ(num_cols_e_ + num_cols_f_, matrix_.num_cols());
}
// The next four methods don't seem to be particularly cache
// friendly. This is an artifact of how the BlockStructure of the
// input matrix is constructed. These methods will benefit from
// multithreading as well as improved data layout.
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
void PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
RightMultiplyE(const double* x, double* y) const {
const CompressedRowBlockStructure* bs = matrix_.block_structure();
// Iterate over the first num_row_blocks_e_ row blocks, and multiply
// by the first cell in each row block.
const double* values = matrix_.values();
for (int r = 0; r < num_row_blocks_e_; ++r) {
const Cell& cell = bs->rows[r].cells[0];
const int row_block_pos = bs->rows[r].block.position;
const int row_block_size = bs->rows[r].block.size;
const int col_block_id = cell.block_id;
const int col_block_pos = bs->cols[col_block_id].position;
const int col_block_size = bs->cols[col_block_id].size;
// clang-format off
MatrixVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
values + cell.position, row_block_size, col_block_size,
x + col_block_pos,
y + row_block_pos);
// clang-format on
}
}
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
void PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
RightMultiplyF(const double* x, double* y) const {
const CompressedRowBlockStructure* bs = matrix_.block_structure();
// Iterate over row blocks, and if the row block is in E, then
// multiply by all the cells except the first one which is of type
// E. If the row block is not in E (i.e its in the bottom
// num_row_blocks - num_row_blocks_e row blocks), then all the cells
// are of type F and multiply by them all.
const double* values = matrix_.values();
for (int r = 0; r < num_row_blocks_e_; ++r) {
const int row_block_pos = bs->rows[r].block.position;
const int row_block_size = bs->rows[r].block.size;
const std::vector<Cell>& cells = bs->rows[r].cells;
for (int c = 1; c < cells.size(); ++c) {
const int col_block_id = cells[c].block_id;
const int col_block_pos = bs->cols[col_block_id].position;
const int col_block_size = bs->cols[col_block_id].size;
// clang-format off
MatrixVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
values + cells[c].position, row_block_size, col_block_size,
x + col_block_pos - num_cols_e_,
y + row_block_pos);
// clang-format on
}
}
for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {
const int row_block_pos = bs->rows[r].block.position;
const int row_block_size = bs->rows[r].block.size;
const std::vector<Cell>& cells = bs->rows[r].cells;
for (const auto& cell : cells) {
const int col_block_id = cell.block_id;
const int col_block_pos = bs->cols[col_block_id].position;
const int col_block_size = bs->cols[col_block_id].size;
// clang-format off
MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
values + cell.position, row_block_size, col_block_size,
x + col_block_pos - num_cols_e_,
y + row_block_pos);
// clang-format on
}
}
}
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
void PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
LeftMultiplyE(const double* x, double* y) const {
const CompressedRowBlockStructure* bs = matrix_.block_structure();
// Iterate over the first num_row_blocks_e_ row blocks, and multiply
// by the first cell in each row block.
const double* values = matrix_.values();
for (int r = 0; r < num_row_blocks_e_; ++r) {
const Cell& cell = bs->rows[r].cells[0];
const int row_block_pos = bs->rows[r].block.position;
const int row_block_size = bs->rows[r].block.size;
const int col_block_id = cell.block_id;
const int col_block_pos = bs->cols[col_block_id].position;
const int col_block_size = bs->cols[col_block_id].size;
// clang-format off
MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
values + cell.position, row_block_size, col_block_size,
x + row_block_pos,
y + col_block_pos);
// clang-format on
}
}
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
void PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
LeftMultiplyF(const double* x, double* y) const {
const CompressedRowBlockStructure* bs = matrix_.block_structure();
// Iterate over row blocks, and if the row block is in E, then
// multiply by all the cells except the first one which is of type
// E. If the row block is not in E (i.e its in the bottom
// num_row_blocks - num_row_blocks_e row blocks), then all the cells
// are of type F and multiply by them all.
const double* values = matrix_.values();
for (int r = 0; r < num_row_blocks_e_; ++r) {
const int row_block_pos = bs->rows[r].block.position;
const int row_block_size = bs->rows[r].block.size;
const std::vector<Cell>& cells = bs->rows[r].cells;
for (int c = 1; c < cells.size(); ++c) {
const int col_block_id = cells[c].block_id;
const int col_block_pos = bs->cols[col_block_id].position;
const int col_block_size = bs->cols[col_block_id].size;
// clang-format off
MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
values + cells[c].position, row_block_size, col_block_size,
x + row_block_pos,
y + col_block_pos - num_cols_e_);
// clang-format on
}
}
for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {
const int row_block_pos = bs->rows[r].block.position;
const int row_block_size = bs->rows[r].block.size;
const std::vector<Cell>& cells = bs->rows[r].cells;
for (const auto& cell : cells) {
const int col_block_id = cell.block_id;
const int col_block_pos = bs->cols[col_block_id].position;
const int col_block_size = bs->cols[col_block_id].size;
// clang-format off
MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
values + cell.position, row_block_size, col_block_size,
x + row_block_pos,
y + col_block_pos - num_cols_e_);
// clang-format on
}
}
}
// Given a range of columns blocks of a matrix m, compute the block
// structure of the block diagonal of the matrix m(:,
// start_col_block:end_col_block)'m(:, start_col_block:end_col_block)
// and return a BlockSparseMatrix with the this block structure. The
// caller owns the result.
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
std::unique_ptr<BlockSparseMatrix>
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
CreateBlockDiagonalMatrixLayout(int start_col_block,
int end_col_block) const {
const CompressedRowBlockStructure* bs = matrix_.block_structure();
auto* block_diagonal_structure = new CompressedRowBlockStructure;
int block_position = 0;
int diagonal_cell_position = 0;
// Iterate over the column blocks, creating a new diagonal block for
// each column block.
for (int c = start_col_block; c < end_col_block; ++c) {
const Block& block = bs->cols[c];
block_diagonal_structure->cols.emplace_back();
Block& diagonal_block = block_diagonal_structure->cols.back();
diagonal_block.size = block.size;
diagonal_block.position = block_position;
block_diagonal_structure->rows.emplace_back();
CompressedRow& row = block_diagonal_structure->rows.back();
row.block = diagonal_block;
row.cells.emplace_back();
Cell& cell = row.cells.back();
cell.block_id = c - start_col_block;
cell.position = diagonal_cell_position;
block_position += block.size;
diagonal_cell_position += block.size * block.size;
}
// Build a BlockSparseMatrix with the just computed block
// structure.
return std::make_unique<BlockSparseMatrix>(block_diagonal_structure);
}
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
std::unique_ptr<BlockSparseMatrix>
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
CreateBlockDiagonalEtE() const {
std::unique_ptr<BlockSparseMatrix> block_diagonal =
CreateBlockDiagonalMatrixLayout(0, num_col_blocks_e_);
UpdateBlockDiagonalEtE(block_diagonal.get());
return block_diagonal;
}
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
std::unique_ptr<BlockSparseMatrix>
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
CreateBlockDiagonalFtF() const {
std::unique_ptr<BlockSparseMatrix> block_diagonal =
CreateBlockDiagonalMatrixLayout(num_col_blocks_e_,
num_col_blocks_e_ + num_col_blocks_f_);
UpdateBlockDiagonalFtF(block_diagonal.get());
return block_diagonal;
}
// Similar to the code in RightMultiplyE, except instead of the matrix
// vector multiply its an outer product.
//
// block_diagonal = block_diagonal(E'E)
//
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
void PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
UpdateBlockDiagonalEtE(BlockSparseMatrix* block_diagonal) const {
const CompressedRowBlockStructure* bs = matrix_.block_structure();
const CompressedRowBlockStructure* block_diagonal_structure =
block_diagonal->block_structure();
block_diagonal->SetZero();
const double* values = matrix_.values();
for (int r = 0; r < num_row_blocks_e_; ++r) {
const Cell& cell = bs->rows[r].cells[0];
const int row_block_size = bs->rows[r].block.size;
const int block_id = cell.block_id;
const int col_block_size = bs->cols[block_id].size;
const int cell_position =
block_diagonal_structure->rows[block_id].cells[0].position;
// clang-format off
MatrixTransposeMatrixMultiply
<kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
values + cell.position, row_block_size, col_block_size,
values + cell.position, row_block_size, col_block_size,
block_diagonal->mutable_values() + cell_position,
0, 0, col_block_size, col_block_size);
// clang-format on
}
}
// Similar to the code in RightMultiplyF, except instead of the matrix
// vector multiply its an outer product.
//
// block_diagonal = block_diagonal(F'F)
//
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
void PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const {
const CompressedRowBlockStructure* bs = matrix_.block_structure();
const CompressedRowBlockStructure* block_diagonal_structure =
block_diagonal->block_structure();
block_diagonal->SetZero();
const double* values = matrix_.values();
for (int r = 0; r < num_row_blocks_e_; ++r) {
const int row_block_size = bs->rows[r].block.size;
const std::vector<Cell>& cells = bs->rows[r].cells;
for (int c = 1; c < cells.size(); ++c) {
const int col_block_id = cells[c].block_id;
const int col_block_size = bs->cols[col_block_id].size;
const int diagonal_block_id = col_block_id - num_col_blocks_e_;
const int cell_position =
block_diagonal_structure->rows[diagonal_block_id].cells[0].position;
// clang-format off
MatrixTransposeMatrixMultiply
<kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
values + cells[c].position, row_block_size, col_block_size,
values + cells[c].position, row_block_size, col_block_size,
block_diagonal->mutable_values() + cell_position,
0, 0, col_block_size, col_block_size);
// clang-format on
}
}
for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {
const int row_block_size = bs->rows[r].block.size;
const std::vector<Cell>& cells = bs->rows[r].cells;
for (const auto& cell : cells) {
const int col_block_id = cell.block_id;
const int col_block_size = bs->cols[col_block_id].size;
const int diagonal_block_id = col_block_id - num_col_blocks_e_;
const int cell_position =
block_diagonal_structure->rows[diagonal_block_id].cells[0].position;
// clang-format off
MatrixTransposeMatrixMultiply
<Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
values + cell.position, row_block_size, col_block_size,
values + cell.position, row_block_size, col_block_size,
block_diagonal->mutable_values() + cell_position,
0, 0, col_block_size, col_block_size);
// clang-format on
}
}
}
} // namespace internal
} // namespace ceres
|