1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
// mierle@gmail.com (Keir Mierle)
#include "ceres/problem_impl.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "ceres/casts.h"
#include "ceres/compressed_row_jacobian_writer.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/context_impl.h"
#include "ceres/cost_function.h"
#include "ceres/crs_matrix.h"
#include "ceres/evaluation_callback.h"
#include "ceres/evaluator.h"
#include "ceres/internal/export.h"
#include "ceres/internal/fixed_array.h"
#include "ceres/loss_function.h"
#include "ceres/manifold.h"
#include "ceres/manifold_adapter.h"
#include "ceres/map_util.h"
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/program_evaluator.h"
#include "ceres/residual_block.h"
#include "ceres/scratch_evaluate_preparer.h"
#include "ceres/stl_util.h"
#include "ceres/stringprintf.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
namespace {
// Returns true if two regions of memory, a and b, with sizes size_a and size_b
// respectively, overlap.
bool RegionsAlias(const double* a, int size_a, const double* b, int size_b) {
return (a < b) ? b < (a + size_a) : a < (b + size_b);
}
void CheckForNoAliasing(double* existing_block,
int existing_block_size,
double* new_block,
int new_block_size) {
CHECK(!RegionsAlias(
existing_block, existing_block_size, new_block, new_block_size))
<< "Aliasing detected between existing parameter block at memory "
<< "location " << existing_block << " and has size "
<< existing_block_size << " with new parameter "
<< "block that has memory address " << new_block << " and would have "
<< "size " << new_block_size << ".";
}
template <typename KeyType>
void DecrementValueOrDeleteKey(const KeyType key,
std::map<KeyType, int>* container) {
auto it = container->find(key);
if (it->second == 1) {
delete key;
container->erase(it);
} else {
--it->second;
}
}
template <typename ForwardIterator>
void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
ForwardIterator end) {
while (begin != end) {
delete begin->first;
++begin;
}
}
void InitializeContext(Context* context,
ContextImpl** context_impl,
bool* context_impl_owned) {
if (context == nullptr) {
*context_impl_owned = true;
*context_impl = new ContextImpl;
} else {
*context_impl_owned = false;
*context_impl = down_cast<ContextImpl*>(context);
}
}
} // namespace
ParameterBlock* ProblemImpl::InternalAddParameterBlock(double* values,
int size) {
CHECK(values != nullptr) << "Null pointer passed to AddParameterBlock "
<< "for a parameter with size " << size;
// Ignore the request if there is a block for the given pointer already.
auto it = parameter_block_map_.find(values);
if (it != parameter_block_map_.end()) {
if (!options_.disable_all_safety_checks) {
int existing_size = it->second->Size();
CHECK(size == existing_size)
<< "Tried adding a parameter block with the same double pointer, "
<< values << ", twice, but with different block sizes. Original "
<< "size was " << existing_size << " but new size is " << size;
}
return it->second;
}
if (!options_.disable_all_safety_checks) {
// Before adding the parameter block, also check that it doesn't alias any
// other parameter blocks.
if (!parameter_block_map_.empty()) {
auto lb = parameter_block_map_.lower_bound(values);
// If lb is not the first block, check the previous block for aliasing.
if (lb != parameter_block_map_.begin()) {
auto previous = lb;
--previous;
CheckForNoAliasing(
previous->first, previous->second->Size(), values, size);
}
// If lb is not off the end, check lb for aliasing.
if (lb != parameter_block_map_.end()) {
CheckForNoAliasing(lb->first, lb->second->Size(), values, size);
}
}
}
// Pass the index of the new parameter block as well to keep the index in
// sync with the position of the parameter in the program's parameter vector.
auto* new_parameter_block =
new ParameterBlock(values, size, program_->parameter_blocks_.size());
// For dynamic problems, add the list of dependent residual blocks, which is
// empty to start.
if (options_.enable_fast_removal) {
new_parameter_block->EnableResidualBlockDependencies();
}
parameter_block_map_[values] = new_parameter_block;
program_->parameter_blocks_.push_back(new_parameter_block);
return new_parameter_block;
}
void ProblemImpl::InternalRemoveResidualBlock(ResidualBlock* residual_block) {
CHECK(residual_block != nullptr);
// Perform no check on the validity of residual_block, that is handled in
// the public method: RemoveResidualBlock().
// If needed, remove the parameter dependencies on this residual block.
if (options_.enable_fast_removal) {
const int num_parameter_blocks_for_residual =
residual_block->NumParameterBlocks();
for (int i = 0; i < num_parameter_blocks_for_residual; ++i) {
residual_block->parameter_blocks()[i]->RemoveResidualBlock(
residual_block);
}
auto it = residual_block_set_.find(residual_block);
residual_block_set_.erase(it);
}
DeleteBlockInVector(program_->mutable_residual_blocks(), residual_block);
}
// Deletes the residual block in question, assuming there are no other
// references to it inside the problem (e.g. by another parameter). Referenced
// cost and loss functions are tucked away for future deletion, since it is not
// possible to know whether other parts of the problem depend on them without
// doing a full scan.
void ProblemImpl::DeleteBlock(ResidualBlock* residual_block) {
// The const casts here are legit, since ResidualBlock holds these
// pointers as const pointers but we have ownership of them and
// have the right to destroy them when the destructor is called.
auto* cost_function =
const_cast<CostFunction*>(residual_block->cost_function());
if (options_.cost_function_ownership == TAKE_OWNERSHIP) {
DecrementValueOrDeleteKey(cost_function, &cost_function_ref_count_);
}
auto* loss_function =
const_cast<LossFunction*>(residual_block->loss_function());
if (options_.loss_function_ownership == TAKE_OWNERSHIP &&
loss_function != nullptr) {
DecrementValueOrDeleteKey(loss_function, &loss_function_ref_count_);
}
delete residual_block;
}
// Deletes the parameter block in question, assuming there are no other
// references to it inside the problem (e.g. by any residual blocks).
void ProblemImpl::DeleteBlock(ParameterBlock* parameter_block) {
parameter_block_map_.erase(parameter_block->mutable_user_state());
delete parameter_block;
}
ProblemImpl::ProblemImpl()
: options_(Problem::Options()), program_(new internal::Program) {
InitializeContext(options_.context, &context_impl_, &context_impl_owned_);
}
ProblemImpl::ProblemImpl(const Problem::Options& options)
: options_(options), program_(new internal::Program) {
program_->evaluation_callback_ = options.evaluation_callback;
InitializeContext(options_.context, &context_impl_, &context_impl_owned_);
}
ProblemImpl::~ProblemImpl() {
STLDeleteContainerPointers(program_->residual_blocks_.begin(),
program_->residual_blocks_.end());
if (options_.cost_function_ownership == TAKE_OWNERSHIP) {
STLDeleteContainerPairFirstPointers(cost_function_ref_count_.begin(),
cost_function_ref_count_.end());
}
if (options_.loss_function_ownership == TAKE_OWNERSHIP) {
STLDeleteContainerPairFirstPointers(loss_function_ref_count_.begin(),
loss_function_ref_count_.end());
}
// Collect the unique parameterizations and delete the parameters.
for (auto* parameter_block : program_->parameter_blocks_) {
DeleteBlock(parameter_block);
}
// Delete the owned parameterizations.
STLDeleteUniqueContainerPointers(local_parameterizations_to_delete_.begin(),
local_parameterizations_to_delete_.end());
// Delete the owned manifolds.
STLDeleteUniqueContainerPointers(manifolds_to_delete_.begin(),
manifolds_to_delete_.end());
if (context_impl_owned_) {
delete context_impl_;
}
}
ResidualBlockId ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* const* const parameter_blocks,
int num_parameter_blocks) {
CHECK(cost_function != nullptr);
CHECK_EQ(num_parameter_blocks, cost_function->parameter_block_sizes().size());
// Check the sizes match.
const std::vector<int32_t>& parameter_block_sizes =
cost_function->parameter_block_sizes();
if (!options_.disable_all_safety_checks) {
CHECK_EQ(parameter_block_sizes.size(), num_parameter_blocks)
<< "Number of blocks input is different than the number of blocks "
<< "that the cost function expects.";
// Check for duplicate parameter blocks.
std::vector<double*> sorted_parameter_blocks(
parameter_blocks, parameter_blocks + num_parameter_blocks);
sort(sorted_parameter_blocks.begin(), sorted_parameter_blocks.end());
const bool has_duplicate_items =
(std::adjacent_find(sorted_parameter_blocks.begin(),
sorted_parameter_blocks.end()) !=
sorted_parameter_blocks.end());
if (has_duplicate_items) {
std::string blocks;
for (int i = 0; i < num_parameter_blocks; ++i) {
blocks += StringPrintf(" %p ", parameter_blocks[i]);
}
LOG(FATAL) << "Duplicate parameter blocks in a residual parameter "
<< "are not allowed. Parameter block pointers: [" << blocks
<< "]";
}
}
// Add parameter blocks and convert the double*'s to parameter blocks.
std::vector<ParameterBlock*> parameter_block_ptrs(num_parameter_blocks);
for (int i = 0; i < num_parameter_blocks; ++i) {
parameter_block_ptrs[i] = InternalAddParameterBlock(
parameter_blocks[i], parameter_block_sizes[i]);
}
if (!options_.disable_all_safety_checks) {
// Check that the block sizes match the block sizes expected by the
// cost_function.
for (int i = 0; i < parameter_block_ptrs.size(); ++i) {
CHECK_EQ(cost_function->parameter_block_sizes()[i],
parameter_block_ptrs[i]->Size())
<< "The cost function expects parameter block " << i << " of size "
<< cost_function->parameter_block_sizes()[i]
<< " but was given a block of size "
<< parameter_block_ptrs[i]->Size();
}
}
auto* new_residual_block =
new ResidualBlock(cost_function,
loss_function,
parameter_block_ptrs,
program_->residual_blocks_.size());
// Add dependencies on the residual to the parameter blocks.
if (options_.enable_fast_removal) {
for (int i = 0; i < num_parameter_blocks; ++i) {
parameter_block_ptrs[i]->AddResidualBlock(new_residual_block);
}
}
program_->residual_blocks_.push_back(new_residual_block);
if (options_.enable_fast_removal) {
residual_block_set_.insert(new_residual_block);
}
if (options_.cost_function_ownership == TAKE_OWNERSHIP) {
// Increment the reference count, creating an entry in the table if
// needed. Note: C++ maps guarantee that new entries have default
// constructed values; this implies integers are zero initialized.
++cost_function_ref_count_[cost_function];
}
if (options_.loss_function_ownership == TAKE_OWNERSHIP &&
loss_function != nullptr) {
++loss_function_ref_count_[loss_function];
}
return new_residual_block;
}
void ProblemImpl::AddParameterBlock(double* values, int size) {
InternalAddParameterBlock(values, size);
}
void ProblemImpl::InternalSetParameterization(
double* values,
ParameterBlock* parameter_block,
LocalParameterization* local_parameterization) {
parameter_block_to_local_param_[values] = local_parameterization;
Manifold* manifold = nullptr;
if (local_parameterization != nullptr) {
if (options_.local_parameterization_ownership == TAKE_OWNERSHIP) {
local_parameterizations_to_delete_.push_back(local_parameterization);
}
manifold = new ManifoldAdapter(local_parameterization);
// Add the manifold to manifolds_to_delete_ unconditionally since
// we own it and it will need to be deleted.
manifolds_to_delete_.push_back(manifold);
}
parameter_block->SetManifold(manifold);
}
void ProblemImpl::InternalSetManifold(double* values,
ParameterBlock* parameter_block,
Manifold* manifold) {
// Reset any association between this parameter block and a local
// parameterization. This only needs done while we are in the transition from
// LocalParameterization to Manifold.
parameter_block_to_local_param_[values] = nullptr;
if (manifold != nullptr && options_.manifold_ownership == TAKE_OWNERSHIP) {
manifolds_to_delete_.push_back(manifold);
}
parameter_block->SetManifold(manifold);
}
void ProblemImpl::AddParameterBlock(
double* values, int size, LocalParameterization* local_parameterization) {
ParameterBlock* parameter_block = InternalAddParameterBlock(values, size);
InternalSetParameterization(values, parameter_block, local_parameterization);
}
void ProblemImpl::AddParameterBlock(double* values,
int size,
Manifold* manifold) {
ParameterBlock* parameter_block = InternalAddParameterBlock(values, size);
InternalSetManifold(values, parameter_block, manifold);
}
// Delete a block from a vector of blocks, maintaining the indexing invariant.
// This is done in constant time by moving an element from the end of the
// vector over the element to remove, then popping the last element. It
// destroys the ordering in the interest of speed.
template <typename Block>
void ProblemImpl::DeleteBlockInVector(std::vector<Block*>* mutable_blocks,
Block* block_to_remove) {
CHECK_EQ((*mutable_blocks)[block_to_remove->index()], block_to_remove)
<< "You found a Ceres bug! \n"
<< "Block requested: " << block_to_remove->ToString() << "\n"
<< "Block present: "
<< (*mutable_blocks)[block_to_remove->index()]->ToString();
// Prepare the to-be-moved block for the new, lower-in-index position by
// setting the index to the blocks final location.
Block* tmp = mutable_blocks->back();
tmp->set_index(block_to_remove->index());
// Overwrite the to-be-deleted residual block with the one at the end.
(*mutable_blocks)[block_to_remove->index()] = tmp;
DeleteBlock(block_to_remove);
// The block is gone so shrink the vector of blocks accordingly.
mutable_blocks->pop_back();
}
void ProblemImpl::RemoveResidualBlock(ResidualBlock* residual_block) {
CHECK(residual_block != nullptr);
// Verify that residual_block identifies a residual in the current problem.
const std::string residual_not_found_message = StringPrintf(
"Residual block to remove: %p not found. This usually means "
"one of three things have happened:\n"
" 1) residual_block is uninitialised and points to a random "
"area in memory.\n"
" 2) residual_block represented a residual that was added to"
" the problem, but referred to a parameter block which has "
"since been removed, which removes all residuals which "
"depend on that parameter block, and was thus removed.\n"
" 3) residual_block referred to a residual that has already "
"been removed from the problem (by the user).",
residual_block);
if (options_.enable_fast_removal) {
CHECK(residual_block_set_.find(residual_block) != residual_block_set_.end())
<< residual_not_found_message;
} else {
// Perform a full search over all current residuals.
CHECK(std::find(program_->residual_blocks().begin(),
program_->residual_blocks().end(),
residual_block) != program_->residual_blocks().end())
<< residual_not_found_message;
}
InternalRemoveResidualBlock(residual_block);
}
void ProblemImpl::RemoveParameterBlock(const double* values) {
ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "it can be removed.";
}
if (options_.enable_fast_removal) {
// Copy the dependent residuals from the parameter block because the set of
// dependents will change after each call to RemoveResidualBlock().
std::vector<ResidualBlock*> residual_blocks_to_remove(
parameter_block->mutable_residual_blocks()->begin(),
parameter_block->mutable_residual_blocks()->end());
for (auto* residual_block : residual_blocks_to_remove) {
InternalRemoveResidualBlock(residual_block);
}
} else {
// Scan all the residual blocks to remove ones that depend on the parameter
// block. Do the scan backwards since the vector changes while iterating.
const int num_residual_blocks = NumResidualBlocks();
for (int i = num_residual_blocks - 1; i >= 0; --i) {
ResidualBlock* residual_block =
(*(program_->mutable_residual_blocks()))[i];
const int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int j = 0; j < num_parameter_blocks; ++j) {
if (residual_block->parameter_blocks()[j] == parameter_block) {
InternalRemoveResidualBlock(residual_block);
// The parameter blocks are guaranteed unique.
break;
}
}
}
}
DeleteBlockInVector(program_->mutable_parameter_blocks(), parameter_block);
}
void ProblemImpl::SetParameterBlockConstant(const double* values) {
ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "it can be set constant.";
}
parameter_block->SetConstant();
}
bool ProblemImpl::IsParameterBlockConstant(const double* values) const {
const ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
CHECK(parameter_block != nullptr)
<< "Parameter block not found: " << values << ". You must add the "
<< "parameter block to the problem before it can be queried.";
return parameter_block->IsConstant();
}
void ProblemImpl::SetParameterBlockVariable(double* values) {
ParameterBlock* parameter_block =
FindWithDefault(parameter_block_map_, values, nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "it can be set varying.";
}
parameter_block->SetVarying();
}
void ProblemImpl::SetParameterization(
double* values, LocalParameterization* local_parameterization) {
ParameterBlock* parameter_block =
FindWithDefault(parameter_block_map_, values, nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can set its local parameterization.";
}
InternalSetParameterization(values, parameter_block, local_parameterization);
}
void ProblemImpl::SetManifold(double* values, Manifold* manifold) {
ParameterBlock* parameter_block =
FindWithDefault(parameter_block_map_, values, nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can set its manifold.";
}
InternalSetManifold(values, parameter_block, manifold);
}
const LocalParameterization* ProblemImpl::GetParameterization(
const double* values) const {
return FindWithDefault(parameter_block_to_local_param_, values, nullptr);
}
bool ProblemImpl::HasParameterization(const double* values) const {
return GetParameterization(values) != nullptr;
}
const Manifold* ProblemImpl::GetManifold(const double* values) const {
ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can get its local parameterization.";
}
return parameter_block->manifold();
}
bool ProblemImpl::HasManifold(const double* values) const {
return GetManifold(values) != nullptr;
}
void ProblemImpl::SetParameterLowerBound(double* values,
int index,
double lower_bound) {
ParameterBlock* parameter_block =
FindWithDefault(parameter_block_map_, values, nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can set a lower bound on one of its components.";
}
parameter_block->SetLowerBound(index, lower_bound);
}
void ProblemImpl::SetParameterUpperBound(double* values,
int index,
double upper_bound) {
ParameterBlock* parameter_block =
FindWithDefault(parameter_block_map_, values, nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can set an upper bound on one of its components.";
}
parameter_block->SetUpperBound(index, upper_bound);
}
double ProblemImpl::GetParameterLowerBound(const double* values,
int index) const {
ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can get the lower bound on one of its components.";
}
return parameter_block->LowerBound(index);
}
double ProblemImpl::GetParameterUpperBound(const double* values,
int index) const {
ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can set an upper bound on one of its components.";
}
return parameter_block->UpperBound(index);
}
bool ProblemImpl::Evaluate(const Problem::EvaluateOptions& evaluate_options,
double* cost,
std::vector<double>* residuals,
std::vector<double>* gradient,
CRSMatrix* jacobian) {
if (cost == nullptr && residuals == nullptr && gradient == nullptr &&
jacobian == nullptr) {
return true;
}
// If the user supplied residual blocks, then use them, otherwise
// take the residual blocks from the underlying program.
Program program;
*program.mutable_residual_blocks() =
((evaluate_options.residual_blocks.size() > 0)
? evaluate_options.residual_blocks
: program_->residual_blocks());
const std::vector<double*>& parameter_block_ptrs =
evaluate_options.parameter_blocks;
std::vector<ParameterBlock*> variable_parameter_blocks;
std::vector<ParameterBlock*>& parameter_blocks =
*program.mutable_parameter_blocks();
if (parameter_block_ptrs.size() == 0) {
// The user did not provide any parameter blocks, so default to
// using all the parameter blocks in the order that they are in
// the underlying program object.
parameter_blocks = program_->parameter_blocks();
} else {
// The user supplied a vector of parameter blocks. Using this list
// requires a number of steps.
// 1. Convert double* into ParameterBlock*
parameter_blocks.resize(parameter_block_ptrs.size());
for (int i = 0; i < parameter_block_ptrs.size(); ++i) {
parameter_blocks[i] = FindWithDefault(
parameter_block_map_, parameter_block_ptrs[i], nullptr);
if (parameter_blocks[i] == nullptr) {
LOG(FATAL) << "No known parameter block for "
<< "Problem::Evaluate::Options.parameter_blocks[" << i << "]"
<< " = " << parameter_block_ptrs[i];
}
}
// 2. The user may have only supplied a subset of parameter
// blocks, so identify the ones that are not supplied by the user
// and are NOT constant. These parameter blocks are stored in
// variable_parameter_blocks.
//
// To ensure that the parameter blocks are not included in the
// columns of the jacobian, we need to make sure that they are
// constant during evaluation and then make them variable again
// after we are done.
std::vector<ParameterBlock*> all_parameter_blocks(
program_->parameter_blocks());
std::vector<ParameterBlock*> included_parameter_blocks(
program.parameter_blocks());
std::vector<ParameterBlock*> excluded_parameter_blocks;
sort(all_parameter_blocks.begin(), all_parameter_blocks.end());
sort(included_parameter_blocks.begin(), included_parameter_blocks.end());
set_difference(all_parameter_blocks.begin(),
all_parameter_blocks.end(),
included_parameter_blocks.begin(),
included_parameter_blocks.end(),
back_inserter(excluded_parameter_blocks));
variable_parameter_blocks.reserve(excluded_parameter_blocks.size());
for (auto* parameter_block : excluded_parameter_blocks) {
if (!parameter_block->IsConstant()) {
variable_parameter_blocks.push_back(parameter_block);
parameter_block->SetConstant();
}
}
}
// Setup the Parameter indices and offsets before an evaluator can
// be constructed and used.
program.SetParameterOffsetsAndIndex();
Evaluator::Options evaluator_options;
// Even though using SPARSE_NORMAL_CHOLESKY requires SuiteSparse or
// CXSparse, here it just being used for telling the evaluator to
// use a SparseRowCompressedMatrix for the jacobian. This is because
// the Evaluator decides the storage for the Jacobian based on the
// type of linear solver being used.
evaluator_options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
#ifdef CERES_NO_THREADS
if (evaluate_options.num_threads > 1) {
LOG(WARNING)
<< "No threading support is compiled into this binary; "
<< "only evaluate_options.num_threads = 1 is supported. Switching "
<< "to single threaded mode.";
}
evaluator_options.num_threads = 1;
#else
evaluator_options.num_threads = evaluate_options.num_threads;
#endif // CERES_NO_THREADS
// The main thread also does work so we only need to launch num_threads - 1.
context_impl_->EnsureMinimumThreads(evaluator_options.num_threads - 1);
evaluator_options.context = context_impl_;
evaluator_options.evaluation_callback =
program_->mutable_evaluation_callback();
std::unique_ptr<Evaluator> evaluator(
new ProgramEvaluator<ScratchEvaluatePreparer,
CompressedRowJacobianWriter>(evaluator_options,
&program));
if (residuals != nullptr) {
residuals->resize(evaluator->NumResiduals());
}
if (gradient != nullptr) {
gradient->resize(evaluator->NumEffectiveParameters());
}
std::unique_ptr<CompressedRowSparseMatrix> tmp_jacobian;
if (jacobian != nullptr) {
tmp_jacobian.reset(down_cast<CompressedRowSparseMatrix*>(
evaluator->CreateJacobian().release()));
}
// Point the state pointers to the user state pointers. This is
// needed so that we can extract a parameter vector which is then
// passed to Evaluator::Evaluate.
program.SetParameterBlockStatePtrsToUserStatePtrs();
// Copy the value of the parameter blocks into a vector, since the
// Evaluate::Evaluate method needs its input as such. The previous
// call to SetParameterBlockStatePtrsToUserStatePtrs ensures that
// these values are the ones corresponding to the actual state of
// the parameter blocks, rather than the temporary state pointer
// used for evaluation.
Vector parameters(program.NumParameters());
program.ParameterBlocksToStateVector(parameters.data());
double tmp_cost = 0;
Evaluator::EvaluateOptions evaluator_evaluate_options;
evaluator_evaluate_options.apply_loss_function =
evaluate_options.apply_loss_function;
bool status =
evaluator->Evaluate(evaluator_evaluate_options,
parameters.data(),
&tmp_cost,
residuals != nullptr ? &(*residuals)[0] : nullptr,
gradient != nullptr ? &(*gradient)[0] : nullptr,
tmp_jacobian.get());
// Make the parameter blocks that were temporarily marked constant,
// variable again.
for (auto* parameter_block : variable_parameter_blocks) {
parameter_block->SetVarying();
}
if (status) {
if (cost != nullptr) {
*cost = tmp_cost;
}
if (jacobian != nullptr) {
tmp_jacobian->ToCRSMatrix(jacobian);
}
}
program_->SetParameterBlockStatePtrsToUserStatePtrs();
program_->SetParameterOffsetsAndIndex();
return status;
}
bool ProblemImpl::EvaluateResidualBlock(ResidualBlock* residual_block,
bool apply_loss_function,
bool new_point,
double* cost,
double* residuals,
double** jacobians) const {
auto evaluation_callback = program_->mutable_evaluation_callback();
if (evaluation_callback) {
evaluation_callback->PrepareForEvaluation(jacobians != nullptr, new_point);
}
ParameterBlock* const* parameter_blocks = residual_block->parameter_blocks();
const int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int i = 0; i < num_parameter_blocks; ++i) {
ParameterBlock* parameter_block = parameter_blocks[i];
if (parameter_block->IsConstant()) {
if (jacobians != nullptr && jacobians[i] != nullptr) {
LOG(ERROR) << "Jacobian requested for parameter block : " << i
<< ". But the parameter block is marked constant.";
return false;
}
} else {
CHECK(parameter_block->SetState(parameter_block->user_state()))
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
}
}
double dummy_cost = 0.0;
FixedArray<double, 32> scratch(
residual_block->NumScratchDoublesForEvaluate());
return residual_block->Evaluate(apply_loss_function,
cost ? cost : &dummy_cost,
residuals,
jacobians,
scratch.data());
}
int ProblemImpl::NumParameterBlocks() const {
return program_->NumParameterBlocks();
}
int ProblemImpl::NumParameters() const { return program_->NumParameters(); }
int ProblemImpl::NumResidualBlocks() const {
return program_->NumResidualBlocks();
}
int ProblemImpl::NumResiduals() const { return program_->NumResiduals(); }
int ProblemImpl::ParameterBlockSize(const double* values) const {
ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can get its size.";
}
return parameter_block->Size();
}
int ProblemImpl::ParameterBlockTangentSize(const double* values) const {
ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can get its tangent size.";
}
return parameter_block->TangentSize();
}
bool ProblemImpl::HasParameterBlock(const double* values) const {
return (parameter_block_map_.find(const_cast<double*>(values)) !=
parameter_block_map_.end());
}
void ProblemImpl::GetParameterBlocks(
std::vector<double*>* parameter_blocks) const {
CHECK(parameter_blocks != nullptr);
parameter_blocks->resize(0);
parameter_blocks->reserve(parameter_block_map_.size());
for (const auto& entry : parameter_block_map_) {
parameter_blocks->push_back(entry.first);
}
}
void ProblemImpl::GetResidualBlocks(
std::vector<ResidualBlockId>* residual_blocks) const {
CHECK(residual_blocks != nullptr);
*residual_blocks = program().residual_blocks();
}
void ProblemImpl::GetParameterBlocksForResidualBlock(
const ResidualBlockId residual_block,
std::vector<double*>* parameter_blocks) const {
int num_parameter_blocks = residual_block->NumParameterBlocks();
CHECK(parameter_blocks != nullptr);
parameter_blocks->resize(num_parameter_blocks);
for (int i = 0; i < num_parameter_blocks; ++i) {
(*parameter_blocks)[i] =
residual_block->parameter_blocks()[i]->mutable_user_state();
}
}
const CostFunction* ProblemImpl::GetCostFunctionForResidualBlock(
const ResidualBlockId residual_block) const {
return residual_block->cost_function();
}
const LossFunction* ProblemImpl::GetLossFunctionForResidualBlock(
const ResidualBlockId residual_block) const {
return residual_block->loss_function();
}
void ProblemImpl::GetResidualBlocksForParameterBlock(
const double* values, std::vector<ResidualBlockId>* residual_blocks) const {
ParameterBlock* parameter_block = FindWithDefault(
parameter_block_map_, const_cast<double*>(values), nullptr);
if (parameter_block == nullptr) {
LOG(FATAL) << "Parameter block not found: " << values
<< ". You must add the parameter block to the problem before "
<< "you can get the residual blocks that depend on it.";
}
if (options_.enable_fast_removal) {
// In this case the residual blocks that depend on the parameter block are
// stored in the parameter block already, so just copy them out.
CHECK(residual_blocks != nullptr);
residual_blocks->resize(parameter_block->mutable_residual_blocks()->size());
std::copy(parameter_block->mutable_residual_blocks()->begin(),
parameter_block->mutable_residual_blocks()->end(),
residual_blocks->begin());
return;
}
// Find residual blocks that depend on the parameter block.
CHECK(residual_blocks != nullptr);
residual_blocks->clear();
const int num_residual_blocks = NumResidualBlocks();
for (int i = 0; i < num_residual_blocks; ++i) {
ResidualBlock* residual_block = (*(program_->mutable_residual_blocks()))[i];
const int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int j = 0; j < num_parameter_blocks; ++j) {
if (residual_block->parameter_blocks()[j] == parameter_block) {
residual_blocks->push_back(residual_block);
// The parameter blocks are guaranteed unique.
break;
}
}
}
}
} // namespace internal
} // namespace ceres
|