1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// The ProgramEvaluator runs the cost functions contained in each residual block
// and stores the result into a jacobian. The particular type of jacobian is
// abstracted out using two template parameters:
//
// - An "EvaluatePreparer" that is responsible for creating the array with
// pointers to the jacobian blocks where the cost function evaluates to.
// - A "JacobianWriter" that is responsible for storing the resulting
// jacobian blocks in the passed sparse matrix.
//
// This abstraction affords an efficient evaluator implementation while still
// supporting writing to multiple sparse matrix formats. For example, when the
// ProgramEvaluator is parameterized for writing to block sparse matrices, the
// residual jacobians are written directly into their final position in the
// block sparse matrix by the user's CostFunction; there is no copying.
//
// The evaluation is threaded with OpenMP or C++ threads.
//
// The EvaluatePreparer and JacobianWriter interfaces are as follows:
//
// class EvaluatePreparer {
// // Prepare the jacobians array for use as the destination of a call to
// // a cost function's evaluate method.
// void Prepare(const ResidualBlock* residual_block,
// int residual_block_index,
// SparseMatrix* jacobian,
// double** jacobians);
// }
//
// class JacobianWriter {
// // Create a jacobian that this writer can write. Same as
// // Evaluator::CreateJacobian.
// std::unique_ptr<SparseMatrix> CreateJacobian() const;
//
// // Create num_threads evaluate preparers.Resulting preparers are valid
// // while *this is.
//
// std::unique_ptr<EvaluatePreparer[]> CreateEvaluatePreparers(
// int num_threads);
//
// // Write the block jacobians from a residual block evaluation to the
// // larger sparse jacobian.
// void Write(int residual_id,
// int residual_offset,
// double** jacobians,
// SparseMatrix* jacobian);
// }
//
// Note: The ProgramEvaluator is not thread safe, since internally it maintains
// some per-thread scratch space.
#ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_
#define CERES_INTERNAL_PROGRAM_EVALUATOR_H_
// This include must come before any #ifndef check on Ceres compile options.
// clang-format off
#include "ceres/internal/config.h"
// clang-format on
#include <atomic>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "ceres/evaluation_callback.h"
#include "ceres/execution_summary.h"
#include "ceres/internal/eigen.h"
#include "ceres/parallel_for.h"
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/small_blas.h"
namespace ceres {
namespace internal {
struct NullJacobianFinalizer {
void operator()(SparseMatrix* jacobian, int num_parameters) {}
};
template <typename EvaluatePreparer,
typename JacobianWriter,
typename JacobianFinalizer = NullJacobianFinalizer>
class ProgramEvaluator final : public Evaluator {
public:
ProgramEvaluator(const Evaluator::Options& options, Program* program)
: options_(options),
program_(program),
jacobian_writer_(options, program),
evaluate_preparers_(std::move(
jacobian_writer_.CreateEvaluatePreparers(options.num_threads))) {
#ifdef CERES_NO_THREADS
if (options_.num_threads > 1) {
LOG(WARNING) << "No threading support is compiled into this binary; "
<< "only options.num_threads = 1 is supported. Switching "
<< "to single threaded mode.";
options_.num_threads = 1;
}
#endif // CERES_NO_THREADS
BuildResidualLayout(*program, &residual_layout_);
evaluate_scratch_ =
std::move(CreateEvaluatorScratch(*program, options.num_threads));
}
// Implementation of Evaluator interface.
std::unique_ptr<SparseMatrix> CreateJacobian() const final {
return jacobian_writer_.CreateJacobian();
}
bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
const double* state,
double* cost,
double* residuals,
double* gradient,
SparseMatrix* jacobian) final {
ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_);
ScopedExecutionTimer call_type_timer(
gradient == nullptr && jacobian == nullptr ? "Evaluator::Residual"
: "Evaluator::Jacobian",
&execution_summary_);
// The parameters are stateful, so set the state before evaluating.
if (!program_->StateVectorToParameterBlocks(state)) {
return false;
}
// Notify the user about a new evaluation point if they are interested.
if (options_.evaluation_callback != nullptr) {
program_->CopyParameterBlockStateToUserState();
options_.evaluation_callback->PrepareForEvaluation(
/*jacobians=*/(gradient != nullptr || jacobian != nullptr),
evaluate_options.new_evaluation_point);
}
if (residuals != nullptr) {
VectorRef(residuals, program_->NumResiduals()).setZero();
}
if (jacobian != nullptr) {
jacobian->SetZero();
}
// Each thread gets it's own cost and evaluate scratch space.
for (int i = 0; i < options_.num_threads; ++i) {
evaluate_scratch_[i].cost = 0.0;
if (gradient != nullptr) {
VectorRef(evaluate_scratch_[i].gradient.get(),
program_->NumEffectiveParameters())
.setZero();
}
}
const int num_residual_blocks = program_->NumResidualBlocks();
// This bool is used to disable the loop if an error is encountered without
// breaking out of it. The remaining loop iterations are still run, but with
// an empty body, and so will finish quickly.
std::atomic_bool abort(false);
ParallelFor(
options_.context,
0,
num_residual_blocks,
options_.num_threads,
[&](int thread_id, int i) {
if (abort) {
return;
}
EvaluatePreparer* preparer = &evaluate_preparers_[thread_id];
EvaluateScratch* scratch = &evaluate_scratch_[thread_id];
// Prepare block residuals if requested.
const ResidualBlock* residual_block = program_->residual_blocks()[i];
double* block_residuals = nullptr;
if (residuals != nullptr) {
block_residuals = residuals + residual_layout_[i];
} else if (gradient != nullptr) {
block_residuals = scratch->residual_block_residuals.get();
}
// Prepare block jacobians if requested.
double** block_jacobians = nullptr;
if (jacobian != nullptr || gradient != nullptr) {
preparer->Prepare(residual_block,
i,
jacobian,
scratch->jacobian_block_ptrs.get());
block_jacobians = scratch->jacobian_block_ptrs.get();
}
// Evaluate the cost, residuals, and jacobians.
double block_cost;
if (!residual_block->Evaluate(
evaluate_options.apply_loss_function,
&block_cost,
block_residuals,
block_jacobians,
scratch->residual_block_evaluate_scratch.get())) {
abort = true;
return;
}
scratch->cost += block_cost;
// Store the jacobians, if they were requested.
if (jacobian != nullptr) {
jacobian_writer_.Write(
i, residual_layout_[i], block_jacobians, jacobian);
}
// Compute and store the gradient, if it was requested.
if (gradient != nullptr) {
int num_residuals = residual_block->NumResiduals();
int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int j = 0; j < num_parameter_blocks; ++j) {
const ParameterBlock* parameter_block =
residual_block->parameter_blocks()[j];
if (parameter_block->IsConstant()) {
continue;
}
MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
block_jacobians[j],
num_residuals,
parameter_block->TangentSize(),
block_residuals,
scratch->gradient.get() + parameter_block->delta_offset());
}
}
});
if (!abort) {
const int num_parameters = program_->NumEffectiveParameters();
// Sum the cost and gradient (if requested) from each thread.
(*cost) = 0.0;
if (gradient != nullptr) {
VectorRef(gradient, num_parameters).setZero();
}
for (int i = 0; i < options_.num_threads; ++i) {
(*cost) += evaluate_scratch_[i].cost;
if (gradient != nullptr) {
VectorRef(gradient, num_parameters) +=
VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters);
}
}
// Finalize the Jacobian if it is available.
// `num_parameters` is passed to the finalizer so that additional
// storage can be reserved for additional diagonal elements if
// necessary.
if (jacobian != nullptr) {
JacobianFinalizer f;
f(jacobian, num_parameters);
}
}
return !abort;
}
bool Plus(const double* state,
const double* delta,
double* state_plus_delta) const final {
return program_->Plus(state, delta, state_plus_delta);
}
int NumParameters() const final { return program_->NumParameters(); }
int NumEffectiveParameters() const final {
return program_->NumEffectiveParameters();
}
int NumResiduals() const final { return program_->NumResiduals(); }
std::map<std::string, CallStatistics> Statistics() const final {
return execution_summary_.statistics();
}
private:
// Per-thread scratch space needed to evaluate and store each residual block.
struct EvaluateScratch {
void Init(int max_parameters_per_residual_block,
int max_scratch_doubles_needed_for_evaluate,
int max_residuals_per_residual_block,
int num_parameters) {
residual_block_evaluate_scratch =
std::make_unique<double[]>(max_scratch_doubles_needed_for_evaluate);
gradient = std::make_unique<double[]>(num_parameters);
VectorRef(gradient.get(), num_parameters).setZero();
residual_block_residuals =
std::make_unique<double[]>(max_residuals_per_residual_block);
jacobian_block_ptrs =
std::make_unique<double*[]>(max_parameters_per_residual_block);
}
double cost;
std::unique_ptr<double[]> residual_block_evaluate_scratch;
// The gradient on the manifold.
std::unique_ptr<double[]> gradient;
// Enough space to store the residual for the largest residual block.
std::unique_ptr<double[]> residual_block_residuals;
std::unique_ptr<double*[]> jacobian_block_ptrs;
};
static void BuildResidualLayout(const Program& program,
std::vector<int>* residual_layout) {
const std::vector<ResidualBlock*>& residual_blocks =
program.residual_blocks();
residual_layout->resize(program.NumResidualBlocks());
int residual_pos = 0;
for (int i = 0; i < residual_blocks.size(); ++i) {
const int num_residuals = residual_blocks[i]->NumResiduals();
(*residual_layout)[i] = residual_pos;
residual_pos += num_residuals;
}
}
// Create scratch space for each thread evaluating the program.
static std::unique_ptr<EvaluateScratch[]> CreateEvaluatorScratch(
const Program& program, int num_threads) {
int max_parameters_per_residual_block =
program.MaxParametersPerResidualBlock();
int max_scratch_doubles_needed_for_evaluate =
program.MaxScratchDoublesNeededForEvaluate();
int max_residuals_per_residual_block =
program.MaxResidualsPerResidualBlock();
int num_parameters = program.NumEffectiveParameters();
auto evaluate_scratch = std::make_unique<EvaluateScratch[]>(num_threads);
for (int i = 0; i < num_threads; i++) {
evaluate_scratch[i].Init(max_parameters_per_residual_block,
max_scratch_doubles_needed_for_evaluate,
max_residuals_per_residual_block,
num_parameters);
}
return evaluate_scratch;
}
Evaluator::Options options_;
Program* program_;
JacobianWriter jacobian_writer_;
std::unique_ptr<EvaluatePreparer[]> evaluate_preparers_;
std::unique_ptr<EvaluateScratch[]> evaluate_scratch_;
std::vector<int> residual_layout_;
::ceres::internal::ExecutionSummary execution_summary_;
};
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_PROGRAM_EVALUATOR_H_
|