1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/reorder_program.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include <vector>
#include "Eigen/SparseCore"
#include "ceres/cxsparse.h"
#include "ceres/internal/config.h"
#include "ceres/internal/export.h"
#include "ceres/ordered_groups.h"
#include "ceres/parameter_block.h"
#include "ceres/parameter_block_ordering.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/solver.h"
#include "ceres/suitesparse.h"
#include "ceres/triplet_sparse_matrix.h"
#include "ceres/types.h"
#ifdef CERES_USE_EIGEN_SPARSE
#include "Eigen/OrderingMethods"
#endif
#include "glog/logging.h"
namespace ceres {
namespace internal {
using std::map;
using std::set;
using std::string;
using std::vector;
namespace {
// Find the minimum index of any parameter block to the given
// residual. Parameter blocks that have indices greater than
// size_of_first_elimination_group are considered to have an index
// equal to size_of_first_elimination_group.
static int MinParameterBlock(const ResidualBlock* residual_block,
int size_of_first_elimination_group) {
int min_parameter_block_position = size_of_first_elimination_group;
for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
if (!parameter_block->IsConstant()) {
CHECK_NE(parameter_block->index(), -1)
<< "Did you forget to call Program::SetParameterOffsetsAndIndex()? "
<< "This is a Ceres bug; please contact the developers!";
min_parameter_block_position =
std::min(parameter_block->index(), min_parameter_block_position);
}
}
return min_parameter_block_position;
}
#if defined(CERES_USE_EIGEN_SPARSE)
Eigen::SparseMatrix<int> CreateBlockJacobian(
const TripletSparseMatrix& block_jacobian_transpose) {
using SparseMatrix = Eigen::SparseMatrix<int>;
using Triplet = Eigen::Triplet<int>;
const int* rows = block_jacobian_transpose.rows();
const int* cols = block_jacobian_transpose.cols();
int num_nonzeros = block_jacobian_transpose.num_nonzeros();
vector<Triplet> triplets;
triplets.reserve(num_nonzeros);
for (int i = 0; i < num_nonzeros; ++i) {
triplets.emplace_back(cols[i], rows[i], 1);
}
SparseMatrix block_jacobian(block_jacobian_transpose.num_cols(),
block_jacobian_transpose.num_rows());
block_jacobian.setFromTriplets(triplets.begin(), triplets.end());
return block_jacobian;
}
#endif
void OrderingForSparseNormalCholeskyUsingSuiteSparse(
const TripletSparseMatrix& tsm_block_jacobian_transpose,
const vector<ParameterBlock*>& parameter_blocks,
const ParameterBlockOrdering& parameter_block_ordering,
int* ordering) {
#ifdef CERES_NO_SUITESPARSE
LOG(FATAL) << "Congratulations, you found a Ceres bug! "
<< "Please report this error to the developers.";
#else
SuiteSparse ss;
cholmod_sparse* block_jacobian_transpose = ss.CreateSparseMatrix(
const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose));
// No CAMD or the user did not supply a useful ordering, then just
// use regular AMD.
if (parameter_block_ordering.NumGroups() <= 1 ||
!SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) {
ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]);
} else {
vector<int> constraints;
for (auto* parameter_block : parameter_blocks) {
constraints.push_back(parameter_block_ordering.GroupId(
parameter_block->mutable_user_state()));
}
// Renumber the entries of constraints to be contiguous integers
// as CAMD requires that the group ids be in the range [0,
// parameter_blocks.size() - 1].
MapValuesToContiguousRange(constraints.size(), &constraints[0]);
ss.ConstrainedApproximateMinimumDegreeOrdering(
block_jacobian_transpose, &constraints[0], ordering);
}
VLOG(2) << "Block ordering stats: "
<< " flops: " << ss.mutable_cc()->fl
<< " lnz : " << ss.mutable_cc()->lnz
<< " anz : " << ss.mutable_cc()->anz;
ss.Free(block_jacobian_transpose);
#endif // CERES_NO_SUITESPARSE
}
void OrderingForSparseNormalCholeskyUsingCXSparse(
const TripletSparseMatrix& tsm_block_jacobian_transpose, int* ordering) {
#ifdef CERES_NO_CXSPARSE
LOG(FATAL) << "Congratulations, you found a Ceres bug! "
<< "Please report this error to the developers.";
#else
// CXSparse works with J'J instead of J'. So compute the block
// sparsity for J'J and compute an approximate minimum degree
// ordering.
CXSparse cxsparse;
cs_di* block_jacobian_transpose;
block_jacobian_transpose = cxsparse.CreateSparseMatrix(
const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose));
cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose);
cs_di* block_hessian =
cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian);
cxsparse.Free(block_jacobian);
cxsparse.Free(block_jacobian_transpose);
cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, ordering);
cxsparse.Free(block_hessian);
#endif // CERES_NO_CXSPARSE
}
void OrderingForSparseNormalCholeskyUsingEigenSparse(
const TripletSparseMatrix& tsm_block_jacobian_transpose, int* ordering) {
#ifndef CERES_USE_EIGEN_SPARSE
LOG(FATAL) << "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE "
"because Ceres was not built with support for "
"Eigen's SimplicialLDLT decomposition. "
"This requires enabling building with -DEIGENSPARSE=ON.";
#else
// This conversion from a TripletSparseMatrix to a Eigen::Triplet
// matrix is unfortunate, but unavoidable for now. It is not a
// significant performance penalty in the grand scheme of
// things. The right thing to do here would be to get a compressed
// row sparse matrix representation of the jacobian and go from
// there. But that is a project for another day.
using SparseMatrix = Eigen::SparseMatrix<int>;
const SparseMatrix block_jacobian =
CreateBlockJacobian(tsm_block_jacobian_transpose);
const SparseMatrix block_hessian =
block_jacobian.transpose() * block_jacobian;
Eigen::AMDOrdering<int> amd_ordering;
Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm;
amd_ordering(block_hessian, perm);
for (int i = 0; i < block_hessian.rows(); ++i) {
ordering[i] = perm.indices()[i];
}
#endif // CERES_USE_EIGEN_SPARSE
}
} // namespace
bool ApplyOrdering(const ProblemImpl::ParameterMap& parameter_map,
const ParameterBlockOrdering& ordering,
Program* program,
string* error) {
const int num_parameter_blocks = program->NumParameterBlocks();
if (ordering.NumElements() != num_parameter_blocks) {
*error = StringPrintf(
"User specified ordering does not have the same "
"number of parameters as the problem. The problem"
"has %d blocks while the ordering has %d blocks.",
num_parameter_blocks,
ordering.NumElements());
return false;
}
vector<ParameterBlock*>* parameter_blocks =
program->mutable_parameter_blocks();
parameter_blocks->clear();
const map<int, set<double*>>& groups = ordering.group_to_elements();
for (const auto& p : groups) {
const set<double*>& group = p.second;
for (double* parameter_block_ptr : group) {
auto it = parameter_map.find(parameter_block_ptr);
if (it == parameter_map.end()) {
*error = StringPrintf(
"User specified ordering contains a pointer "
"to a double that is not a parameter block in "
"the problem. The invalid double is in group: %d",
p.first);
return false;
}
parameter_blocks->push_back(it->second);
}
}
return true;
}
bool LexicographicallyOrderResidualBlocks(
const int size_of_first_elimination_group,
Program* program,
string* error) {
CHECK_GE(size_of_first_elimination_group, 1)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
// Create a histogram of the number of residuals for each E block. There is an
// extra bucket at the end to catch all non-eliminated F blocks.
vector<int> residual_blocks_per_e_block(size_of_first_elimination_group + 1);
vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
vector<int> min_position_per_residual(residual_blocks->size());
for (int i = 0; i < residual_blocks->size(); ++i) {
ResidualBlock* residual_block = (*residual_blocks)[i];
int position =
MinParameterBlock(residual_block, size_of_first_elimination_group);
min_position_per_residual[i] = position;
DCHECK_LE(position, size_of_first_elimination_group);
residual_blocks_per_e_block[position]++;
}
// Run a cumulative sum on the histogram, to obtain offsets to the start of
// each histogram bucket (where each bucket is for the residuals for that
// E-block).
vector<int> offsets(size_of_first_elimination_group + 1);
std::partial_sum(residual_blocks_per_e_block.begin(),
residual_blocks_per_e_block.end(),
offsets.begin());
CHECK_EQ(offsets.back(), residual_blocks->size())
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
CHECK(find(residual_blocks_per_e_block.begin(),
residual_blocks_per_e_block.end() - 1,
0) == residual_blocks_per_e_block.end() - 1)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
// Fill in each bucket with the residual blocks for its corresponding E block.
// Each bucket is individually filled from the back of the bucket to the front
// of the bucket. The filling order among the buckets is dictated by the
// residual blocks. This loop uses the offsets as counters; subtracting one
// from each offset as a residual block is placed in the bucket. When the
// filling is finished, the offset pointerts should have shifted down one
// entry (this is verified below).
vector<ResidualBlock*> reordered_residual_blocks(
(*residual_blocks).size(), static_cast<ResidualBlock*>(nullptr));
for (int i = 0; i < residual_blocks->size(); ++i) {
int bucket = min_position_per_residual[i];
// Decrement the cursor, which should now point at the next empty position.
offsets[bucket]--;
// Sanity.
CHECK(reordered_residual_blocks[offsets[bucket]] == nullptr)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
}
// Sanity check #1: The difference in bucket offsets should match the
// histogram sizes.
for (int i = 0; i < size_of_first_elimination_group; ++i) {
CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
}
// Sanity check #2: No nullptr's left behind.
for (auto* residual_block : reordered_residual_blocks) {
CHECK(residual_block != nullptr)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
}
// Now that the residuals are collected by E block, swap them in place.
swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
return true;
}
// Pre-order the columns corresponding to the schur complement if
// possible.
static void MaybeReorderSchurComplementColumnsUsingSuiteSparse(
const ParameterBlockOrdering& parameter_block_ordering, Program* program) {
#ifndef CERES_NO_SUITESPARSE
SuiteSparse ss;
if (!SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) {
return;
}
vector<int> constraints;
vector<ParameterBlock*>& parameter_blocks =
*(program->mutable_parameter_blocks());
for (auto* parameter_block : parameter_blocks) {
constraints.push_back(parameter_block_ordering.GroupId(
parameter_block->mutable_user_state()));
}
// Renumber the entries of constraints to be contiguous integers as
// CAMD requires that the group ids be in the range [0,
// parameter_blocks.size() - 1].
MapValuesToContiguousRange(constraints.size(), &constraints[0]);
// Compute a block sparse presentation of J'.
std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
program->CreateJacobianBlockSparsityTranspose());
cholmod_sparse* block_jacobian_transpose =
ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
vector<int> ordering(parameter_blocks.size(), 0);
ss.ConstrainedApproximateMinimumDegreeOrdering(
block_jacobian_transpose, &constraints[0], &ordering[0]);
ss.Free(block_jacobian_transpose);
const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
for (int i = 0; i < program->NumParameterBlocks(); ++i) {
parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
}
program->SetParameterOffsetsAndIndex();
#endif
}
static void MaybeReorderSchurComplementColumnsUsingEigen(
const int size_of_first_elimination_group,
const ProblemImpl::ParameterMap& parameter_map,
Program* program) {
#if defined(CERES_USE_EIGEN_SPARSE)
std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
program->CreateJacobianBlockSparsityTranspose());
using SparseMatrix = Eigen::SparseMatrix<int>;
const SparseMatrix block_jacobian =
CreateBlockJacobian(*tsm_block_jacobian_transpose);
const int num_rows = block_jacobian.rows();
const int num_cols = block_jacobian.cols();
// Vertically partition the jacobian in parameter blocks of type E
// and F.
const SparseMatrix E =
block_jacobian.block(0, 0, num_rows, size_of_first_elimination_group);
const SparseMatrix F =
block_jacobian.block(0,
size_of_first_elimination_group,
num_rows,
num_cols - size_of_first_elimination_group);
// Block sparsity pattern of the schur complement.
const SparseMatrix block_schur_complement =
F.transpose() * F - F.transpose() * E * E.transpose() * F;
Eigen::AMDOrdering<int> amd_ordering;
Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm;
amd_ordering(block_schur_complement, perm);
const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
vector<ParameterBlock*> ordering(num_cols);
// The ordering of the first size_of_first_elimination_group does
// not matter, so we preserve the existing ordering.
for (int i = 0; i < size_of_first_elimination_group; ++i) {
ordering[i] = parameter_blocks[i];
}
// For the rest of the blocks, use the ordering computed using AMD.
for (int i = 0; i < block_schur_complement.cols(); ++i) {
ordering[size_of_first_elimination_group + i] =
parameter_blocks[size_of_first_elimination_group + perm.indices()[i]];
}
swap(*program->mutable_parameter_blocks(), ordering);
program->SetParameterOffsetsAndIndex();
#endif
}
bool ReorderProgramForSchurTypeLinearSolver(
const LinearSolverType linear_solver_type,
const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
const ProblemImpl::ParameterMap& parameter_map,
ParameterBlockOrdering* parameter_block_ordering,
Program* program,
string* error) {
if (parameter_block_ordering->NumElements() !=
program->NumParameterBlocks()) {
*error = StringPrintf(
"The program has %d parameter blocks, but the parameter block "
"ordering has %d parameter blocks.",
program->NumParameterBlocks(),
parameter_block_ordering->NumElements());
return false;
}
if (parameter_block_ordering->NumGroups() == 1) {
// If the user supplied an parameter_block_ordering with just one
// group, it is equivalent to the user supplying nullptr as an
// parameter_block_ordering. Ceres is completely free to choose the
// parameter block ordering as it sees fit. For Schur type solvers,
// this means that the user wishes for Ceres to identify the
// e_blocks, which we do by computing a maximal independent set.
vector<ParameterBlock*> schur_ordering;
const int size_of_first_elimination_group =
ComputeStableSchurOrdering(*program, &schur_ordering);
CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks())
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
// Update the parameter_block_ordering object.
for (int i = 0; i < schur_ordering.size(); ++i) {
double* parameter_block = schur_ordering[i]->mutable_user_state();
const int group_id = (i < size_of_first_elimination_group) ? 0 : 1;
parameter_block_ordering->AddElementToGroup(parameter_block, group_id);
}
// We could call ApplyOrdering but this is cheaper and
// simpler.
swap(*program->mutable_parameter_blocks(), schur_ordering);
} else {
// The user provided an ordering with more than one elimination
// group.
// Verify that the first elimination group is an independent set.
const set<double*>& first_elimination_group =
parameter_block_ordering->group_to_elements().begin()->second;
if (!program->IsParameterBlockSetIndependent(first_elimination_group)) {
*error = StringPrintf(
"The first elimination group in the parameter block "
"ordering of size %zd is not an independent set",
first_elimination_group.size());
return false;
}
if (!ApplyOrdering(
parameter_map, *parameter_block_ordering, program, error)) {
return false;
}
}
program->SetParameterOffsetsAndIndex();
const int size_of_first_elimination_group =
parameter_block_ordering->group_to_elements().begin()->second.size();
if (linear_solver_type == SPARSE_SCHUR) {
if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
MaybeReorderSchurComplementColumnsUsingSuiteSparse(
*parameter_block_ordering, program);
} else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) {
MaybeReorderSchurComplementColumnsUsingEigen(
size_of_first_elimination_group, parameter_map, program);
}
}
// Schur type solvers also require that their residual blocks be
// lexicographically ordered.
return LexicographicallyOrderResidualBlocks(
size_of_first_elimination_group, program, error);
}
bool ReorderProgramForSparseCholesky(
const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
const ParameterBlockOrdering& parameter_block_ordering,
int start_row_block,
Program* program,
string* error) {
if (parameter_block_ordering.NumElements() != program->NumParameterBlocks()) {
*error = StringPrintf(
"The program has %d parameter blocks, but the parameter block "
"ordering has %d parameter blocks.",
program->NumParameterBlocks(),
parameter_block_ordering.NumElements());
return false;
}
// Compute a block sparse presentation of J'.
std::unique_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
program->CreateJacobianBlockSparsityTranspose(start_row_block));
vector<int> ordering(program->NumParameterBlocks(), 0);
vector<ParameterBlock*>& parameter_blocks =
*(program->mutable_parameter_blocks());
if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
OrderingForSparseNormalCholeskyUsingSuiteSparse(
*tsm_block_jacobian_transpose,
parameter_blocks,
parameter_block_ordering,
&ordering[0]);
} else if (sparse_linear_algebra_library_type == CX_SPARSE) {
OrderingForSparseNormalCholeskyUsingCXSparse(*tsm_block_jacobian_transpose,
&ordering[0]);
} else if (sparse_linear_algebra_library_type == ACCELERATE_SPARSE) {
// Accelerate does not provide a function to perform reordering without
// performing a full symbolic factorisation. As such, we have nothing
// to gain from trying to reorder the problem here, as it will happen
// in AppleAccelerateCholesky::Factorize() (once) and reordering here
// would involve performing two symbolic factorisations instead of one
// which would have a negative overall impact on performance.
return true;
} else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) {
OrderingForSparseNormalCholeskyUsingEigenSparse(
*tsm_block_jacobian_transpose, &ordering[0]);
}
// Apply ordering.
const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
for (int i = 0; i < program->NumParameterBlocks(); ++i) {
parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
}
program->SetParameterOffsetsAndIndex();
return true;
}
int ReorderResidualBlocksByPartition(
const std::unordered_set<ResidualBlockId>& bottom_residual_blocks,
Program* program) {
auto residual_blocks = program->mutable_residual_blocks();
auto it = std::partition(residual_blocks->begin(),
residual_blocks->end(),
[&bottom_residual_blocks](ResidualBlock* r) {
return bottom_residual_blocks.count(r) == 0;
});
return it - residual_blocks->begin();
}
} // namespace internal
} // namespace ceres
|