1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#ifndef CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
#define CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
#include <memory>
#include <set>
#include <utility>
#include <vector>
#include "ceres/block_random_access_diagonal_matrix.h"
#include "ceres/block_random_access_matrix.h"
#include "ceres/block_sparse_matrix.h"
#include "ceres/block_structure.h"
#include "ceres/dense_cholesky.h"
#include "ceres/internal/config.h"
#include "ceres/internal/export.h"
#include "ceres/linear_solver.h"
#include "ceres/schur_eliminator.h"
#include "ceres/types.h"
#ifdef CERES_USE_EIGEN_SPARSE
#include "Eigen/OrderingMethods"
#include "Eigen/SparseCholesky"
#endif
#include "ceres/internal/disable_warnings.h"
namespace ceres {
namespace internal {
class BlockSparseMatrix;
class SparseCholesky;
// Base class for Schur complement based linear least squares
// solvers. It assumes that the input linear system Ax = b can be
// partitioned into
//
// E y + F z = b
//
// Where x = [y;z] is a partition of the variables. The paritioning
// of the variables is such that, E'E is a block diagonal
// matrix. Further, the rows of A are ordered so that for every
// variable block in y, all the rows containing that variable block
// occur as a vertically contiguous block. i.e the matrix A looks like
//
// E F
// A = [ y1 0 0 0 | z1 0 0 0 z5]
// [ y1 0 0 0 | z1 z2 0 0 0]
// [ 0 y2 0 0 | 0 0 z3 0 0]
// [ 0 0 y3 0 | z1 z2 z3 z4 z5]
// [ 0 0 y3 0 | z1 0 0 0 z5]
// [ 0 0 0 y4 | 0 0 0 0 z5]
// [ 0 0 0 y4 | 0 z2 0 0 0]
// [ 0 0 0 y4 | 0 0 0 0 0]
// [ 0 0 0 0 | z1 0 0 0 0]
// [ 0 0 0 0 | 0 0 z3 z4 z5]
//
// This structure should be reflected in the corresponding
// CompressedRowBlockStructure object associated with A. The linear
// system Ax = b should either be well posed or the array D below
// should be non-null and the diagonal matrix corresponding to it
// should be non-singular.
//
// SchurComplementSolver has two sub-classes.
//
// DenseSchurComplementSolver: For problems where the Schur complement
// matrix is small and dense, or if CHOLMOD/SuiteSparse is not
// installed. For structure from motion problems, this is solver can
// be used for problems with upto a few hundred cameras.
//
// SparseSchurComplementSolver: For problems where the Schur
// complement matrix is large and sparse. It requires that Ceres be
// build with at least one sparse linear algebra library, as it
// computes a sparse Cholesky factorization of the Schur complement.
//
// This solver can be used for solving structure from motion problems
// with tens of thousands of cameras, though depending on the exact
// sparsity structure, it maybe better to use an iterative solver.
//
// The two solvers can be instantiated by calling
// LinearSolver::CreateLinearSolver with LinearSolver::Options::type
// set to DENSE_SCHUR and SPARSE_SCHUR
// respectively. LinearSolver::Options::elimination_groups[0] should
// be at least 1.
class CERES_NO_EXPORT SchurComplementSolver : public BlockSparseMatrixSolver {
public:
explicit SchurComplementSolver(const LinearSolver::Options& options);
SchurComplementSolver(const SchurComplementSolver&) = delete;
void operator=(const SchurComplementSolver&) = delete;
LinearSolver::Summary SolveImpl(
BlockSparseMatrix* A,
const double* b,
const LinearSolver::PerSolveOptions& per_solve_options,
double* x) override;
protected:
const LinearSolver::Options& options() const { return options_; }
void set_lhs(std::unique_ptr<BlockRandomAccessMatrix> lhs) {
lhs_ = std::move(lhs);
}
const BlockRandomAccessMatrix* lhs() const { return lhs_.get(); }
BlockRandomAccessMatrix* mutable_lhs() { return lhs_.get(); }
void set_rhs(std::unique_ptr<double[]> rhs) { rhs_ = std::move(rhs); }
const double* rhs() const { return rhs_.get(); }
private:
virtual void InitStorage(const CompressedRowBlockStructure* bs) = 0;
virtual LinearSolver::Summary SolveReducedLinearSystem(
const LinearSolver::PerSolveOptions& per_solve_options,
double* solution) = 0;
LinearSolver::Options options_;
std::unique_ptr<SchurEliminatorBase> eliminator_;
std::unique_ptr<BlockRandomAccessMatrix> lhs_;
std::unique_ptr<double[]> rhs_;
};
// Dense Cholesky factorization based solver.
class CERES_NO_EXPORT DenseSchurComplementSolver final
: public SchurComplementSolver {
public:
explicit DenseSchurComplementSolver(const LinearSolver::Options& options);
DenseSchurComplementSolver(const DenseSchurComplementSolver&) = delete;
void operator=(const DenseSchurComplementSolver&) = delete;
~DenseSchurComplementSolver() override;
private:
void InitStorage(const CompressedRowBlockStructure* bs) final;
LinearSolver::Summary SolveReducedLinearSystem(
const LinearSolver::PerSolveOptions& per_solve_options,
double* solution) final;
std::unique_ptr<DenseCholesky> cholesky_;
};
// Sparse Cholesky factorization based solver.
class CERES_NO_EXPORT SparseSchurComplementSolver final
: public SchurComplementSolver {
public:
explicit SparseSchurComplementSolver(const LinearSolver::Options& options);
SparseSchurComplementSolver(const SparseSchurComplementSolver&) = delete;
void operator=(const SparseSchurComplementSolver&) = delete;
~SparseSchurComplementSolver() override;
private:
void InitStorage(const CompressedRowBlockStructure* bs) final;
LinearSolver::Summary SolveReducedLinearSystem(
const LinearSolver::PerSolveOptions& per_solve_options,
double* solution) final;
LinearSolver::Summary SolveReducedLinearSystemUsingConjugateGradients(
const LinearSolver::PerSolveOptions& per_solve_options, double* solution);
// Size of the blocks in the Schur complement.
std::vector<int> blocks_;
std::unique_ptr<SparseCholesky> sparse_cholesky_;
std::unique_ptr<BlockRandomAccessDiagonalMatrix> preconditioner_;
};
} // namespace internal
} // namespace ceres
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
|