1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
// This include must come before any #ifndef check on Ceres compile options.
#include "ceres/internal/config.h"
#ifndef CERES_NO_SUITESPARSE
#include <memory>
#include <vector>
#include "ceres/compressed_col_sparse_matrix_utils.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/linear_solver.h"
#include "ceres/suitesparse.h"
#include "ceres/triplet_sparse_matrix.h"
#include "cholmod.h"
namespace ceres {
namespace internal {
using std::string;
using std::vector;
SuiteSparse::SuiteSparse() { cholmod_start(&cc_); }
SuiteSparse::~SuiteSparse() { cholmod_finish(&cc_); }
cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) {
cholmod_triplet triplet;
triplet.nrow = A->num_rows();
triplet.ncol = A->num_cols();
triplet.nzmax = A->max_num_nonzeros();
triplet.nnz = A->num_nonzeros();
triplet.i = reinterpret_cast<void*>(A->mutable_rows());
triplet.j = reinterpret_cast<void*>(A->mutable_cols());
triplet.x = reinterpret_cast<void*>(A->mutable_values());
triplet.stype = 0; // Matrix is not symmetric.
triplet.itype = CHOLMOD_INT;
triplet.xtype = CHOLMOD_REAL;
triplet.dtype = CHOLMOD_DOUBLE;
return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
}
cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose(
TripletSparseMatrix* A) {
cholmod_triplet triplet;
triplet.ncol = A->num_rows(); // swap row and columns
triplet.nrow = A->num_cols();
triplet.nzmax = A->max_num_nonzeros();
triplet.nnz = A->num_nonzeros();
// swap rows and columns
triplet.j = reinterpret_cast<void*>(A->mutable_rows());
triplet.i = reinterpret_cast<void*>(A->mutable_cols());
triplet.x = reinterpret_cast<void*>(A->mutable_values());
triplet.stype = 0; // Matrix is not symmetric.
triplet.itype = CHOLMOD_INT;
triplet.xtype = CHOLMOD_REAL;
triplet.dtype = CHOLMOD_DOUBLE;
return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
}
cholmod_sparse SuiteSparse::CreateSparseMatrixTransposeView(
CompressedRowSparseMatrix* A) {
cholmod_sparse m;
m.nrow = A->num_cols();
m.ncol = A->num_rows();
m.nzmax = A->num_nonzeros();
m.nz = nullptr;
m.p = reinterpret_cast<void*>(A->mutable_rows());
m.i = reinterpret_cast<void*>(A->mutable_cols());
m.x = reinterpret_cast<void*>(A->mutable_values());
m.z = nullptr;
if (A->storage_type() == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
m.stype = 1;
} else if (A->storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
m.stype = -1;
} else {
m.stype = 0;
}
m.itype = CHOLMOD_INT;
m.xtype = CHOLMOD_REAL;
m.dtype = CHOLMOD_DOUBLE;
m.sorted = 1;
m.packed = 1;
return m;
}
cholmod_dense SuiteSparse::CreateDenseVectorView(const double* x, int size) {
cholmod_dense v;
v.nrow = size;
v.ncol = 1;
v.nzmax = size;
v.d = size;
v.x = const_cast<void*>(reinterpret_cast<const void*>(x));
v.xtype = CHOLMOD_REAL;
v.dtype = CHOLMOD_DOUBLE;
return v;
}
cholmod_dense* SuiteSparse::CreateDenseVector(const double* x,
int in_size,
int out_size) {
CHECK_LE(in_size, out_size);
cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_);
if (x != nullptr) {
memcpy(v->x, x, in_size * sizeof(*x));
}
return v;
}
cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A,
string* message) {
// Cholmod can try multiple re-ordering strategies to find a fill
// reducing ordering. Here we just tell it use AMD with automatic
// matrix dependence choice of supernodal versus simplicial
// factorization.
cc_.nmethods = 1;
cc_.method[0].ordering = CHOLMOD_AMD;
cc_.supernodal = CHOLMOD_AUTO;
cholmod_factor* factor = cholmod_analyze(A, &cc_);
if (VLOG_IS_ON(2)) {
cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
}
if (cc_.status != CHOLMOD_OK) {
*message =
StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
return nullptr;
}
CHECK(factor != nullptr);
return factor;
}
cholmod_factor* SuiteSparse::BlockAnalyzeCholesky(cholmod_sparse* A,
const vector<int>& row_blocks,
const vector<int>& col_blocks,
string* message) {
vector<int> ordering;
if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) {
return nullptr;
}
return AnalyzeCholeskyWithUserOrdering(A, ordering, message);
}
cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(
cholmod_sparse* A, const vector<int>& ordering, string* message) {
CHECK_EQ(ordering.size(), A->nrow);
cc_.nmethods = 1;
cc_.method[0].ordering = CHOLMOD_GIVEN;
cholmod_factor* factor =
cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), nullptr, 0, &cc_);
if (VLOG_IS_ON(2)) {
cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
}
if (cc_.status != CHOLMOD_OK) {
*message =
StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
return nullptr;
}
CHECK(factor != nullptr);
return factor;
}
cholmod_factor* SuiteSparse::AnalyzeCholeskyWithNaturalOrdering(
cholmod_sparse* A, string* message) {
cc_.nmethods = 1;
cc_.method[0].ordering = CHOLMOD_NATURAL;
cc_.postorder = 0;
cholmod_factor* factor = cholmod_analyze(A, &cc_);
if (VLOG_IS_ON(2)) {
cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
}
if (cc_.status != CHOLMOD_OK) {
*message =
StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
return nullptr;
}
CHECK(factor != nullptr);
return factor;
}
bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A,
const vector<int>& row_blocks,
const vector<int>& col_blocks,
vector<int>* ordering) {
const int num_row_blocks = row_blocks.size();
const int num_col_blocks = col_blocks.size();
// Arrays storing the compressed column structure of the matrix
// incoding the block sparsity of A.
vector<int> block_cols;
vector<int> block_rows;
CompressedColumnScalarMatrixToBlockMatrix(reinterpret_cast<const int*>(A->i),
reinterpret_cast<const int*>(A->p),
row_blocks,
col_blocks,
&block_rows,
&block_cols);
cholmod_sparse_struct block_matrix;
block_matrix.nrow = num_row_blocks;
block_matrix.ncol = num_col_blocks;
block_matrix.nzmax = block_rows.size();
block_matrix.p = reinterpret_cast<void*>(&block_cols[0]);
block_matrix.i = reinterpret_cast<void*>(&block_rows[0]);
block_matrix.x = nullptr;
block_matrix.stype = A->stype;
block_matrix.itype = CHOLMOD_INT;
block_matrix.xtype = CHOLMOD_PATTERN;
block_matrix.dtype = CHOLMOD_DOUBLE;
block_matrix.sorted = 1;
block_matrix.packed = 1;
vector<int> block_ordering(num_row_blocks);
if (!cholmod_amd(&block_matrix, nullptr, 0, &block_ordering[0], &cc_)) {
return false;
}
BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering);
return true;
}
LinearSolverTerminationType SuiteSparse::Cholesky(cholmod_sparse* A,
cholmod_factor* L,
string* message) {
CHECK(A != nullptr);
CHECK(L != nullptr);
// Save the current print level and silence CHOLMOD, otherwise
// CHOLMOD is prone to dumping stuff to stderr, which can be
// distracting when the error (matrix is indefinite) is not a fatal
// failure.
const int old_print_level = cc_.print;
cc_.print = 0;
cc_.quick_return_if_not_posdef = 1;
int cholmod_status = cholmod_factorize(A, L, &cc_);
cc_.print = old_print_level;
switch (cc_.status) {
case CHOLMOD_NOT_INSTALLED:
*message = "CHOLMOD failure: Method not installed.";
return LINEAR_SOLVER_FATAL_ERROR;
case CHOLMOD_OUT_OF_MEMORY:
*message = "CHOLMOD failure: Out of memory.";
return LINEAR_SOLVER_FATAL_ERROR;
case CHOLMOD_TOO_LARGE:
*message = "CHOLMOD failure: Integer overflow occurred.";
return LINEAR_SOLVER_FATAL_ERROR;
case CHOLMOD_INVALID:
*message = "CHOLMOD failure: Invalid input.";
return LINEAR_SOLVER_FATAL_ERROR;
case CHOLMOD_NOT_POSDEF:
*message = "CHOLMOD warning: Matrix not positive definite.";
return LINEAR_SOLVER_FAILURE;
case CHOLMOD_DSMALL:
*message =
"CHOLMOD warning: D for LDL' or diag(L) or "
"LL' has tiny absolute value.";
return LINEAR_SOLVER_FAILURE;
case CHOLMOD_OK:
if (cholmod_status != 0) {
return LINEAR_SOLVER_SUCCESS;
}
*message =
"CHOLMOD failure: cholmod_factorize returned false "
"but cholmod_common::status is CHOLMOD_OK."
"Please report this to ceres-solver@googlegroups.com.";
return LINEAR_SOLVER_FATAL_ERROR;
default:
*message = StringPrintf(
"Unknown cholmod return code: %d. "
"Please report this to ceres-solver@googlegroups.com.",
cc_.status);
return LINEAR_SOLVER_FATAL_ERROR;
}
return LINEAR_SOLVER_FATAL_ERROR;
}
cholmod_dense* SuiteSparse::Solve(cholmod_factor* L,
cholmod_dense* b,
string* message) {
if (cc_.status != CHOLMOD_OK) {
*message = "cholmod_solve failed. CHOLMOD status is not CHOLMOD_OK";
return nullptr;
}
return cholmod_solve(CHOLMOD_A, L, b, &cc_);
}
bool SuiteSparse::ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
int* ordering) {
return cholmod_amd(matrix, nullptr, 0, ordering, &cc_);
}
bool SuiteSparse::ConstrainedApproximateMinimumDegreeOrdering(
cholmod_sparse* matrix, int* constraints, int* ordering) {
#ifndef CERES_NO_CAMD
return cholmod_camd(matrix, nullptr, 0, constraints, ordering, &cc_);
#else
LOG(FATAL) << "Congratulations you have found a bug in Ceres."
<< "Ceres Solver was compiled with SuiteSparse "
<< "version 4.1.0 or less. Calling this function "
<< "in that case is a bug. Please contact the"
<< "the Ceres Solver developers.";
return false;
#endif
}
std::unique_ptr<SparseCholesky> SuiteSparseCholesky::Create(
const OrderingType ordering_type) {
return std::unique_ptr<SparseCholesky>(
new SuiteSparseCholesky(ordering_type));
}
SuiteSparseCholesky::SuiteSparseCholesky(const OrderingType ordering_type)
: ordering_type_(ordering_type), factor_(nullptr) {}
SuiteSparseCholesky::~SuiteSparseCholesky() {
if (factor_ != nullptr) {
ss_.Free(factor_);
}
}
LinearSolverTerminationType SuiteSparseCholesky::Factorize(
CompressedRowSparseMatrix* lhs, string* message) {
if (lhs == nullptr) {
*message = "Failure: Input lhs is nullptr.";
return LINEAR_SOLVER_FATAL_ERROR;
}
cholmod_sparse cholmod_lhs = ss_.CreateSparseMatrixTransposeView(lhs);
if (factor_ == nullptr) {
if (ordering_type_ == NATURAL) {
factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&cholmod_lhs, message);
} else {
if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) {
factor_ = ss_.BlockAnalyzeCholesky(
&cholmod_lhs, lhs->col_blocks(), lhs->row_blocks(), message);
} else {
factor_ = ss_.AnalyzeCholesky(&cholmod_lhs, message);
}
}
if (factor_ == nullptr) {
return LINEAR_SOLVER_FATAL_ERROR;
}
}
return ss_.Cholesky(&cholmod_lhs, factor_, message);
}
CompressedRowSparseMatrix::StorageType SuiteSparseCholesky::StorageType()
const {
return ((ordering_type_ == NATURAL)
? CompressedRowSparseMatrix::UPPER_TRIANGULAR
: CompressedRowSparseMatrix::LOWER_TRIANGULAR);
}
LinearSolverTerminationType SuiteSparseCholesky::Solve(const double* rhs,
double* solution,
string* message) {
// Error checking
if (factor_ == nullptr) {
*message = "Solve called without a call to Factorize first.";
return LINEAR_SOLVER_FATAL_ERROR;
}
const int num_cols = factor_->n;
cholmod_dense cholmod_rhs = ss_.CreateDenseVectorView(rhs, num_cols);
cholmod_dense* cholmod_dense_solution =
ss_.Solve(factor_, &cholmod_rhs, message);
if (cholmod_dense_solution == nullptr) {
return LINEAR_SOLVER_FAILURE;
}
memcpy(solution, cholmod_dense_solution->x, num_cols * sizeof(*solution));
ss_.Free(cholmod_dense_solution);
return LINEAR_SOLVER_SUCCESS;
}
} // namespace internal
} // namespace ceres
#endif // CERES_NO_SUITESPARSE
|