1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2016 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/trust_region_minimizer.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "Eigen/Core"
#include "ceres/array_utils.h"
#include "ceres/coordinate_descent_minimizer.h"
#include "ceres/evaluator.h"
#include "ceres/file.h"
#include "ceres/line_search.h"
#include "ceres/stringprintf.h"
#include "ceres/types.h"
#include "ceres/wall_time.h"
#include "glog/logging.h"
// Helper macro to simplify some of the control flow.
#define RETURN_IF_ERROR_AND_LOG(expr) \
do { \
if (!(expr)) { \
LOG(ERROR) << "Terminating: " << solver_summary_->message; \
return; \
} \
} while (0)
namespace ceres {
namespace internal {
void TrustRegionMinimizer::Minimize(const Minimizer::Options& options,
double* parameters,
Solver::Summary* solver_summary) {
start_time_in_secs_ = WallTimeInSeconds();
iteration_start_time_in_secs_ = start_time_in_secs_;
Init(options, parameters, solver_summary);
RETURN_IF_ERROR_AND_LOG(IterationZero());
// Create the TrustRegionStepEvaluator. The construction needs to be
// delayed to this point because we need the cost for the starting
// point to initialize the step evaluator.
step_evaluator_ = std::make_unique<TrustRegionStepEvaluator>(
x_cost_,
options_.use_nonmonotonic_steps
? options_.max_consecutive_nonmonotonic_steps
: 0);
while (FinalizeIterationAndCheckIfMinimizerCanContinue()) {
iteration_start_time_in_secs_ = WallTimeInSeconds();
const double previous_gradient_norm = iteration_summary_.gradient_norm;
const double previous_gradient_max_norm =
iteration_summary_.gradient_max_norm;
iteration_summary_ = IterationSummary();
iteration_summary_.iteration =
solver_summary->iterations.back().iteration + 1;
RETURN_IF_ERROR_AND_LOG(ComputeTrustRegionStep());
if (!iteration_summary_.step_is_valid) {
RETURN_IF_ERROR_AND_LOG(HandleInvalidStep());
continue;
}
if (options_.is_constrained &&
options_.max_num_line_search_step_size_iterations > 0) {
// Use a projected line search to enforce the bounds constraints
// and improve the quality of the step.
DoLineSearch(x_, gradient_, x_cost_, &delta_);
}
ComputeCandidatePointAndEvaluateCost();
DoInnerIterationsIfNeeded();
if (ParameterToleranceReached()) {
return;
}
if (FunctionToleranceReached()) {
return;
}
if (IsStepSuccessful()) {
RETURN_IF_ERROR_AND_LOG(HandleSuccessfulStep());
} else {
// Declare the step unsuccessful and inform the trust region strategy.
iteration_summary_.step_is_successful = false;
iteration_summary_.cost = candidate_cost_ + solver_summary_->fixed_cost;
// When the step is unsuccessful, we do not compute the gradient
// (or update x), so we preserve its value from the last
// successful iteration.
iteration_summary_.gradient_norm = previous_gradient_norm;
iteration_summary_.gradient_max_norm = previous_gradient_max_norm;
strategy_->StepRejected(iteration_summary_.relative_decrease);
}
}
}
// Initialize the minimizer, allocate working space and set some of
// the fields in the solver_summary.
void TrustRegionMinimizer::Init(const Minimizer::Options& options,
double* parameters,
Solver::Summary* solver_summary) {
options_ = options;
sort(options_.trust_region_minimizer_iterations_to_dump.begin(),
options_.trust_region_minimizer_iterations_to_dump.end());
parameters_ = parameters;
solver_summary_ = solver_summary;
solver_summary_->termination_type = NO_CONVERGENCE;
solver_summary_->num_successful_steps = 0;
solver_summary_->num_unsuccessful_steps = 0;
solver_summary_->is_constrained = options.is_constrained;
CHECK(options_.evaluator != nullptr);
CHECK(options_.jacobian != nullptr);
CHECK(options_.trust_region_strategy != nullptr);
evaluator_ = options_.evaluator.get();
jacobian_ = options_.jacobian.get();
strategy_ = options_.trust_region_strategy.get();
is_not_silent_ = !options.is_silent;
inner_iterations_are_enabled_ =
options.inner_iteration_minimizer.get() != nullptr;
inner_iterations_were_useful_ = false;
num_parameters_ = evaluator_->NumParameters();
num_effective_parameters_ = evaluator_->NumEffectiveParameters();
num_residuals_ = evaluator_->NumResiduals();
num_consecutive_invalid_steps_ = 0;
x_ = ConstVectorRef(parameters_, num_parameters_);
x_norm_ = x_.norm();
residuals_.resize(num_residuals_);
trust_region_step_.resize(num_effective_parameters_);
delta_.resize(num_effective_parameters_);
candidate_x_.resize(num_parameters_);
gradient_.resize(num_effective_parameters_);
model_residuals_.resize(num_residuals_);
negative_gradient_.resize(num_effective_parameters_);
projected_gradient_step_.resize(num_parameters_);
// By default scaling is one, if the user requests Jacobi scaling of
// the Jacobian, we will compute and overwrite this vector.
jacobian_scaling_ = Vector::Ones(num_effective_parameters_);
x_norm_ = -1; // Invalid value
x_cost_ = std::numeric_limits<double>::max();
minimum_cost_ = x_cost_;
model_cost_change_ = 0.0;
}
// 1. Project the initial solution onto the feasible set if needed.
// 2. Compute the initial cost, jacobian & gradient.
//
// Return true if all computations can be performed successfully.
bool TrustRegionMinimizer::IterationZero() {
iteration_summary_ = IterationSummary();
iteration_summary_.iteration = 0;
iteration_summary_.step_is_valid = false;
iteration_summary_.step_is_successful = false;
iteration_summary_.cost_change = 0.0;
iteration_summary_.gradient_max_norm = 0.0;
iteration_summary_.gradient_norm = 0.0;
iteration_summary_.step_norm = 0.0;
iteration_summary_.relative_decrease = 0.0;
iteration_summary_.eta = options_.eta;
iteration_summary_.linear_solver_iterations = 0;
iteration_summary_.step_solver_time_in_seconds = 0;
if (options_.is_constrained) {
delta_.setZero();
if (!evaluator_->Plus(x_.data(), delta_.data(), candidate_x_.data())) {
solver_summary_->message =
"Unable to project initial point onto the feasible set.";
solver_summary_->termination_type = FAILURE;
return false;
}
x_ = candidate_x_;
x_norm_ = x_.norm();
}
if (!EvaluateGradientAndJacobian(/*new_evaluation_point=*/true)) {
return false;
}
solver_summary_->initial_cost = x_cost_ + solver_summary_->fixed_cost;
iteration_summary_.step_is_valid = true;
iteration_summary_.step_is_successful = true;
return true;
}
// For the current x_, compute
//
// 1. Cost
// 2. Jacobian
// 3. Gradient
// 4. Scale the Jacobian if needed (and compute the scaling if we are
// in iteration zero).
// 5. Compute the 2 and max norm of the gradient.
//
// Returns true if all computations could be performed
// successfully. Any failures are considered fatal and the
// Solver::Summary is updated to indicate this.
bool TrustRegionMinimizer::EvaluateGradientAndJacobian(
bool new_evaluation_point) {
Evaluator::EvaluateOptions evaluate_options;
evaluate_options.new_evaluation_point = new_evaluation_point;
if (!evaluator_->Evaluate(evaluate_options,
x_.data(),
&x_cost_,
residuals_.data(),
gradient_.data(),
jacobian_)) {
solver_summary_->message = "Residual and Jacobian evaluation failed.";
solver_summary_->termination_type = FAILURE;
return false;
}
iteration_summary_.cost = x_cost_ + solver_summary_->fixed_cost;
if (options_.jacobi_scaling) {
if (iteration_summary_.iteration == 0) {
// Compute a scaling vector that is used to improve the
// conditioning of the Jacobian.
//
// jacobian_scaling_ = diag(J'J)^{-1}
jacobian_->SquaredColumnNorm(jacobian_scaling_.data());
for (int i = 0; i < jacobian_->num_cols(); ++i) {
// Add one to the denominator to prevent division by zero.
jacobian_scaling_[i] = 1.0 / (1.0 + sqrt(jacobian_scaling_[i]));
}
}
// jacobian = jacobian * diag(J'J) ^{-1}
jacobian_->ScaleColumns(jacobian_scaling_.data());
}
// The gradient exists in the local tangent space. To account for
// the bounds constraints correctly, instead of just computing the
// norm of the gradient vector, we compute
//
// |Plus(x, -gradient) - x|
//
// Where the Plus operator lifts the negative gradient to the
// ambient space, adds it to x and projects it on the hypercube
// defined by the bounds.
negative_gradient_ = -gradient_;
if (!evaluator_->Plus(x_.data(),
negative_gradient_.data(),
projected_gradient_step_.data())) {
solver_summary_->message =
"projected_gradient_step = Plus(x, -gradient) failed.";
solver_summary_->termination_type = FAILURE;
return false;
}
iteration_summary_.gradient_max_norm =
(x_ - projected_gradient_step_).lpNorm<Eigen::Infinity>();
iteration_summary_.gradient_norm = (x_ - projected_gradient_step_).norm();
return true;
}
// 1. Add the final timing information to the iteration summary.
// 2. Run the callbacks
// 3. Check for termination based on
// a. Run time
// b. Iteration count
// c. Max norm of the gradient
// d. Size of the trust region radius.
//
// Returns true if user did not terminate the solver and none of these
// termination criterion are met.
bool TrustRegionMinimizer::FinalizeIterationAndCheckIfMinimizerCanContinue() {
if (iteration_summary_.step_is_successful) {
++solver_summary_->num_successful_steps;
if (x_cost_ < minimum_cost_) {
minimum_cost_ = x_cost_;
VectorRef(parameters_, num_parameters_) = x_;
iteration_summary_.step_is_nonmonotonic = false;
} else {
iteration_summary_.step_is_nonmonotonic = true;
}
} else {
++solver_summary_->num_unsuccessful_steps;
}
iteration_summary_.trust_region_radius = strategy_->Radius();
iteration_summary_.iteration_time_in_seconds =
WallTimeInSeconds() - iteration_start_time_in_secs_;
iteration_summary_.cumulative_time_in_seconds =
WallTimeInSeconds() - start_time_in_secs_ +
solver_summary_->preprocessor_time_in_seconds;
solver_summary_->iterations.push_back(iteration_summary_);
if (!RunCallbacks(options_, iteration_summary_, solver_summary_)) {
return false;
}
if (MaxSolverTimeReached()) {
return false;
}
if (MaxSolverIterationsReached()) {
return false;
}
if (GradientToleranceReached()) {
return false;
}
if (MinTrustRegionRadiusReached()) {
return false;
}
return true;
}
// Compute the trust region step using the TrustRegionStrategy chosen
// by the user.
//
// If the strategy returns with LINEAR_SOLVER_FATAL_ERROR, which
// indicates an unrecoverable error, return false. This is the only
// condition that returns false.
//
// If the strategy returns with LINEAR_SOLVER_FAILURE, which indicates
// a numerical failure that could be recovered from by retrying
// (e.g. by increasing the strength of the regularization), we set
// iteration_summary_.step_is_valid to false and return true.
//
// In all other cases, we compute the decrease in the trust region
// model problem. In exact arithmetic, this should always be
// positive, but due to numerical problems in the TrustRegionStrategy
// or round off error when computing the decrease it may be
// negative. In which case again, we set
// iteration_summary_.step_is_valid to false.
bool TrustRegionMinimizer::ComputeTrustRegionStep() {
const double strategy_start_time = WallTimeInSeconds();
iteration_summary_.step_is_valid = false;
TrustRegionStrategy::PerSolveOptions per_solve_options;
per_solve_options.eta = options_.eta;
if (find(options_.trust_region_minimizer_iterations_to_dump.begin(),
options_.trust_region_minimizer_iterations_to_dump.end(),
iteration_summary_.iteration) !=
options_.trust_region_minimizer_iterations_to_dump.end()) {
per_solve_options.dump_format_type =
options_.trust_region_problem_dump_format_type;
per_solve_options.dump_filename_base =
JoinPath(options_.trust_region_problem_dump_directory,
StringPrintf("ceres_solver_iteration_%03d",
iteration_summary_.iteration));
}
TrustRegionStrategy::Summary strategy_summary =
strategy_->ComputeStep(per_solve_options,
jacobian_,
residuals_.data(),
trust_region_step_.data());
if (strategy_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
solver_summary_->message =
"Linear solver failed due to unrecoverable "
"non-numeric causes. Please see the error log for clues. ";
solver_summary_->termination_type = FAILURE;
return false;
}
iteration_summary_.step_solver_time_in_seconds =
WallTimeInSeconds() - strategy_start_time;
iteration_summary_.linear_solver_iterations = strategy_summary.num_iterations;
if (strategy_summary.termination_type == LINEAR_SOLVER_FAILURE) {
return true;
}
// new_model_cost
// = 1/2 [f + J * step]^2
// = 1/2 [ f'f + 2f'J * step + step' * J' * J * step ]
// model_cost_change
// = cost - new_model_cost
// = f'f/2 - 1/2 [ f'f + 2f'J * step + step' * J' * J * step]
// = -f'J * step - step' * J' * J * step / 2
// = -(J * step)'(f + J * step / 2)
model_residuals_.setZero();
jacobian_->RightMultiply(trust_region_step_.data(), model_residuals_.data());
model_cost_change_ =
-model_residuals_.dot(residuals_ + model_residuals_ / 2.0);
// TODO(sameeragarwal)
//
// 1. What happens if model_cost_change_ = 0
// 2. What happens if -epsilon <= model_cost_change_ < 0 for some
// small epsilon due to round off error.
iteration_summary_.step_is_valid = (model_cost_change_ > 0.0);
if (iteration_summary_.step_is_valid) {
// Undo the Jacobian column scaling.
delta_ = (trust_region_step_.array() * jacobian_scaling_.array()).matrix();
num_consecutive_invalid_steps_ = 0;
}
if (is_not_silent_ && !iteration_summary_.step_is_valid) {
VLOG(1) << "Invalid step: current_cost: " << x_cost_
<< " absolute model cost change: " << model_cost_change_
<< " relative model cost change: "
<< (model_cost_change_ / x_cost_);
}
return true;
}
// Invalid steps can happen due to a number of reasons, and we allow a
// limited number of consecutive failures, and return false if this
// limit is exceeded.
bool TrustRegionMinimizer::HandleInvalidStep() {
// TODO(sameeragarwal): Should we be returning FAILURE or
// NO_CONVERGENCE? The solution value is still usable in many cases,
// it is not clear if we should declare the solver a failure
// entirely. For example the case where model_cost_change ~ 0.0, but
// just slightly negative.
if (++num_consecutive_invalid_steps_ >=
options_.max_num_consecutive_invalid_steps) {
solver_summary_->message = StringPrintf(
"Number of consecutive invalid steps more "
"than Solver::Options::max_num_consecutive_invalid_steps: %d",
options_.max_num_consecutive_invalid_steps);
solver_summary_->termination_type = FAILURE;
return false;
}
strategy_->StepIsInvalid();
// We are going to try and reduce the trust region radius and
// solve again. To do this, we are going to treat this iteration
// as an unsuccessful iteration. Since the various callbacks are
// still executed, we are going to fill the iteration summary
// with data that assumes a step of length zero and no progress.
iteration_summary_.cost = x_cost_ + solver_summary_->fixed_cost;
iteration_summary_.cost_change = 0.0;
iteration_summary_.gradient_max_norm =
solver_summary_->iterations.back().gradient_max_norm;
iteration_summary_.gradient_norm =
solver_summary_->iterations.back().gradient_norm;
iteration_summary_.step_norm = 0.0;
iteration_summary_.relative_decrease = 0.0;
iteration_summary_.eta = options_.eta;
return true;
}
// Use the supplied coordinate descent minimizer to perform inner
// iterations and compute the improvement due to it. Returns the cost
// after performing the inner iterations.
//
// The optimization is performed with candidate_x_ as the starting
// point, and if the optimization is successful, candidate_x_ will be
// updated with the optimized parameters.
void TrustRegionMinimizer::DoInnerIterationsIfNeeded() {
inner_iterations_were_useful_ = false;
if (!inner_iterations_are_enabled_ ||
candidate_cost_ >= std::numeric_limits<double>::max()) {
return;
}
double inner_iteration_start_time = WallTimeInSeconds();
++solver_summary_->num_inner_iteration_steps;
inner_iteration_x_ = candidate_x_;
Solver::Summary inner_iteration_summary;
options_.inner_iteration_minimizer->Minimize(
options_, inner_iteration_x_.data(), &inner_iteration_summary);
double inner_iteration_cost;
if (!evaluator_->Evaluate(inner_iteration_x_.data(),
&inner_iteration_cost,
nullptr,
nullptr,
nullptr)) {
if (is_not_silent_) {
VLOG(2) << "Inner iteration failed.";
}
return;
}
if (is_not_silent_) {
VLOG(2) << "Inner iteration succeeded; Current cost: " << x_cost_
<< " Trust region step cost: " << candidate_cost_
<< " Inner iteration cost: " << inner_iteration_cost;
}
candidate_x_ = inner_iteration_x_;
// Normally, the quality of a trust region step is measured by
// the ratio
//
// cost_change
// r = -----------------
// model_cost_change
//
// All the change in the nonlinear objective is due to the trust
// region step so this ratio is a good measure of the quality of
// the trust region radius. However, when inner iterations are
// being used, cost_change includes the contribution of the
// inner iterations and its not fair to credit it all to the
// trust region algorithm. So we change the ratio to be
//
// cost_change
// r = ------------------------------------------------
// (model_cost_change + inner_iteration_cost_change)
//
// Practically we do this by increasing model_cost_change by
// inner_iteration_cost_change.
const double inner_iteration_cost_change =
candidate_cost_ - inner_iteration_cost;
model_cost_change_ += inner_iteration_cost_change;
inner_iterations_were_useful_ = inner_iteration_cost < x_cost_;
const double inner_iteration_relative_progress =
1.0 - inner_iteration_cost / candidate_cost_;
// Disable inner iterations once the relative improvement
// drops below tolerance.
inner_iterations_are_enabled_ =
(inner_iteration_relative_progress > options_.inner_iteration_tolerance);
if (is_not_silent_ && !inner_iterations_are_enabled_) {
VLOG(2) << "Disabling inner iterations. Progress : "
<< inner_iteration_relative_progress;
}
candidate_cost_ = inner_iteration_cost;
solver_summary_->inner_iteration_time_in_seconds +=
WallTimeInSeconds() - inner_iteration_start_time;
}
// Perform a projected line search to improve the objective function
// value along delta.
//
// TODO(sameeragarwal): The current implementation does not do
// anything illegal but is incorrect and not terribly effective.
//
// https://github.com/ceres-solver/ceres-solver/issues/187
void TrustRegionMinimizer::DoLineSearch(const Vector& x,
const Vector& gradient,
const double cost,
Vector* delta) {
LineSearchFunction line_search_function(evaluator_);
LineSearch::Options line_search_options;
line_search_options.is_silent = true;
line_search_options.interpolation_type =
options_.line_search_interpolation_type;
line_search_options.min_step_size = options_.min_line_search_step_size;
line_search_options.sufficient_decrease =
options_.line_search_sufficient_function_decrease;
line_search_options.max_step_contraction =
options_.max_line_search_step_contraction;
line_search_options.min_step_contraction =
options_.min_line_search_step_contraction;
line_search_options.max_num_iterations =
options_.max_num_line_search_step_size_iterations;
line_search_options.sufficient_curvature_decrease =
options_.line_search_sufficient_curvature_decrease;
line_search_options.max_step_expansion =
options_.max_line_search_step_expansion;
line_search_options.function = &line_search_function;
std::string message;
std::unique_ptr<LineSearch> line_search(
LineSearch::Create(ceres::ARMIJO, line_search_options, &message));
LineSearch::Summary line_search_summary;
line_search_function.Init(x, *delta);
line_search->Search(1.0, cost, gradient.dot(*delta), &line_search_summary);
solver_summary_->num_line_search_steps += line_search_summary.num_iterations;
solver_summary_->line_search_cost_evaluation_time_in_seconds +=
line_search_summary.cost_evaluation_time_in_seconds;
solver_summary_->line_search_gradient_evaluation_time_in_seconds +=
line_search_summary.gradient_evaluation_time_in_seconds;
solver_summary_->line_search_polynomial_minimization_time_in_seconds +=
line_search_summary.polynomial_minimization_time_in_seconds;
solver_summary_->line_search_total_time_in_seconds +=
line_search_summary.total_time_in_seconds;
if (line_search_summary.success) {
*delta *= line_search_summary.optimal_point.x;
}
}
// Check if the maximum amount of time allowed by the user for the
// solver has been exceeded, and if so return false after updating
// Solver::Summary::message.
bool TrustRegionMinimizer::MaxSolverTimeReached() {
const double total_solver_time =
WallTimeInSeconds() - start_time_in_secs_ +
solver_summary_->preprocessor_time_in_seconds;
if (total_solver_time < options_.max_solver_time_in_seconds) {
return false;
}
solver_summary_->message = StringPrintf(
"Maximum solver time reached. "
"Total solver time: %e >= %e.",
total_solver_time,
options_.max_solver_time_in_seconds);
solver_summary_->termination_type = NO_CONVERGENCE;
if (is_not_silent_) {
VLOG(1) << "Terminating: " << solver_summary_->message;
}
return true;
}
// Check if the maximum number of iterations allowed by the user for
// the solver has been exceeded, and if so return false after updating
// Solver::Summary::message.
bool TrustRegionMinimizer::MaxSolverIterationsReached() {
if (iteration_summary_.iteration < options_.max_num_iterations) {
return false;
}
solver_summary_->message = StringPrintf(
"Maximum number of iterations reached. "
"Number of iterations: %d.",
iteration_summary_.iteration);
solver_summary_->termination_type = NO_CONVERGENCE;
if (is_not_silent_) {
VLOG(1) << "Terminating: " << solver_summary_->message;
}
return true;
}
// Check convergence based on the max norm of the gradient (only for
// iterations where the step was declared successful).
bool TrustRegionMinimizer::GradientToleranceReached() {
if (!iteration_summary_.step_is_successful ||
iteration_summary_.gradient_max_norm > options_.gradient_tolerance) {
return false;
}
solver_summary_->message = StringPrintf(
"Gradient tolerance reached. "
"Gradient max norm: %e <= %e",
iteration_summary_.gradient_max_norm,
options_.gradient_tolerance);
solver_summary_->termination_type = CONVERGENCE;
if (is_not_silent_) {
VLOG(1) << "Terminating: " << solver_summary_->message;
}
return true;
}
// Check convergence based the size of the trust region radius.
bool TrustRegionMinimizer::MinTrustRegionRadiusReached() {
if (iteration_summary_.trust_region_radius >
options_.min_trust_region_radius) {
return false;
}
solver_summary_->message = StringPrintf(
"Minimum trust region radius reached. "
"Trust region radius: %e <= %e",
iteration_summary_.trust_region_radius,
options_.min_trust_region_radius);
solver_summary_->termination_type = CONVERGENCE;
if (is_not_silent_) {
VLOG(1) << "Terminating: " << solver_summary_->message;
}
return true;
}
// Solver::Options::parameter_tolerance based convergence check.
bool TrustRegionMinimizer::ParameterToleranceReached() {
// Compute the norm of the step in the ambient space.
iteration_summary_.step_norm = (x_ - candidate_x_).norm();
const double step_size_tolerance =
options_.parameter_tolerance * (x_norm_ + options_.parameter_tolerance);
if (iteration_summary_.step_norm > step_size_tolerance) {
return false;
}
solver_summary_->message = StringPrintf(
"Parameter tolerance reached. "
"Relative step_norm: %e <= %e.",
(iteration_summary_.step_norm / (x_norm_ + options_.parameter_tolerance)),
options_.parameter_tolerance);
solver_summary_->termination_type = CONVERGENCE;
if (is_not_silent_) {
VLOG(1) << "Terminating: " << solver_summary_->message;
}
return true;
}
// Solver::Options::function_tolerance based convergence check.
bool TrustRegionMinimizer::FunctionToleranceReached() {
iteration_summary_.cost_change = x_cost_ - candidate_cost_;
const double absolute_function_tolerance =
options_.function_tolerance * x_cost_;
if (fabs(iteration_summary_.cost_change) > absolute_function_tolerance) {
return false;
}
solver_summary_->message = StringPrintf(
"Function tolerance reached. "
"|cost_change|/cost: %e <= %e",
fabs(iteration_summary_.cost_change) / x_cost_,
options_.function_tolerance);
solver_summary_->termination_type = CONVERGENCE;
if (is_not_silent_) {
VLOG(1) << "Terminating: " << solver_summary_->message;
}
return true;
}
// Compute candidate_x_ = Plus(x_, delta_)
// Evaluate the cost of candidate_x_ as candidate_cost_.
//
// Failure to compute the step or the cost mean that candidate_cost_ is set to
// std::numeric_limits<double>::max(). Unlike EvaluateGradientAndJacobian,
// failure in this function is not fatal as we are only computing and evaluating
// a candidate point, and if for some reason we are unable to evaluate it, we
// consider it to be a point with very high cost. This allows the user to deal
// with edge cases/constraints as part of the Manifold and CostFunction objects.
void TrustRegionMinimizer::ComputeCandidatePointAndEvaluateCost() {
if (!evaluator_->Plus(x_.data(), delta_.data(), candidate_x_.data())) {
if (is_not_silent_) {
LOG(WARNING) << "x_plus_delta = Plus(x, delta) failed. "
<< "Treating it as a step with infinite cost";
}
candidate_cost_ = std::numeric_limits<double>::max();
return;
}
if (!evaluator_->Evaluate(
candidate_x_.data(), &candidate_cost_, nullptr, nullptr, nullptr)) {
if (is_not_silent_) {
LOG(WARNING) << "Step failed to evaluate. "
<< "Treating it as a step with infinite cost";
}
candidate_cost_ = std::numeric_limits<double>::max();
}
}
bool TrustRegionMinimizer::IsStepSuccessful() {
iteration_summary_.relative_decrease =
step_evaluator_->StepQuality(candidate_cost_, model_cost_change_);
// In most cases, boosting the model_cost_change by the
// improvement caused by the inner iterations is fine, but it can
// be the case that the original trust region step was so bad that
// the resulting improvement in the cost was negative, and the
// change caused by the inner iterations was large enough to
// improve the step, but also to make relative decrease quite
// small.
//
// This can cause the trust region loop to reject this step. To
// get around this, we explicitly check if the inner iterations
// led to a net decrease in the objective function value. If
// they did, we accept the step even if the trust region ratio
// is small.
//
// Notice that we do not just check that cost_change is positive
// which is a weaker condition and would render the
// min_relative_decrease threshold useless. Instead, we keep
// track of inner_iterations_were_useful, which is true only
// when inner iterations lead to a net decrease in the cost.
return (inner_iterations_were_useful_ ||
iteration_summary_.relative_decrease >
options_.min_relative_decrease);
}
// Declare the step successful, move to candidate_x, update the
// derivatives and let the trust region strategy and the step
// evaluator know that the step has been accepted.
bool TrustRegionMinimizer::HandleSuccessfulStep() {
x_ = candidate_x_;
x_norm_ = x_.norm();
// Since the step was successful, this point has already had the residual
// evaluated (but not the jacobian). So indicate that to the evaluator.
if (!EvaluateGradientAndJacobian(/*new_evaluation_point=*/false)) {
return false;
}
iteration_summary_.step_is_successful = true;
strategy_->StepAccepted(iteration_summary_.relative_decrease);
step_evaluator_->StepAccepted(candidate_cost_, model_cost_change_);
return true;
}
} // namespace internal
} // namespace ceres
|