1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/trust_region_preprocessor.h"
#include <numeric>
#include <string>
#include "ceres/callbacks.h"
#include "ceres/context_impl.h"
#include "ceres/evaluator.h"
#include "ceres/linear_solver.h"
#include "ceres/minimizer.h"
#include "ceres/parameter_block.h"
#include "ceres/preconditioner.h"
#include "ceres/preprocessor.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
#include "ceres/reorder_program.h"
#include "ceres/suitesparse.h"
#include "ceres/trust_region_strategy.h"
#include "ceres/wall_time.h"
namespace ceres {
namespace internal {
using std::vector;
namespace {
std::shared_ptr<ParameterBlockOrdering> CreateDefaultLinearSolverOrdering(
const Program& program) {
std::shared_ptr<ParameterBlockOrdering> ordering =
std::make_shared<ParameterBlockOrdering>();
const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks();
for (auto* parameter_block : parameter_blocks) {
ordering->AddElementToGroup(
const_cast<double*>(parameter_block->user_state()), 0);
}
return ordering;
}
// Check if all the user supplied values in the parameter blocks are
// sane or not, and if the program is feasible or not.
bool IsProgramValid(const Program& program, std::string* error) {
return (program.ParameterBlocksAreFinite(error) && program.IsFeasible(error));
}
void AlternateLinearSolverAndPreconditionerForSchurTypeLinearSolver(
Solver::Options* options) {
if (!IsSchurType(options->linear_solver_type)) {
return;
}
const LinearSolverType linear_solver_type_given = options->linear_solver_type;
const PreconditionerType preconditioner_type_given =
options->preconditioner_type;
options->linear_solver_type =
LinearSolver::LinearSolverForZeroEBlocks(linear_solver_type_given);
std::string message;
if (linear_solver_type_given == ITERATIVE_SCHUR) {
options->preconditioner_type =
Preconditioner::PreconditionerForZeroEBlocks(preconditioner_type_given);
message =
StringPrintf("No E blocks. Switching from %s(%s) to %s(%s).",
LinearSolverTypeToString(linear_solver_type_given),
PreconditionerTypeToString(preconditioner_type_given),
LinearSolverTypeToString(options->linear_solver_type),
PreconditionerTypeToString(options->preconditioner_type));
} else {
message =
StringPrintf("No E blocks. Switching from %s to %s.",
LinearSolverTypeToString(linear_solver_type_given),
LinearSolverTypeToString(options->linear_solver_type));
}
if (options->logging_type != SILENT) {
VLOG(1) << message;
}
}
// Reorder the program to reduce fill-in and increase cache coherency.
bool ReorderProgram(PreprocessedProblem* pp) {
const Solver::Options& options = pp->options;
if (IsSchurType(options.linear_solver_type)) {
return ReorderProgramForSchurTypeLinearSolver(
options.linear_solver_type,
options.sparse_linear_algebra_library_type,
pp->problem->parameter_map(),
options.linear_solver_ordering.get(),
pp->reduced_program.get(),
&pp->error);
}
if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY &&
!options.dynamic_sparsity) {
return ReorderProgramForSparseCholesky(
options.sparse_linear_algebra_library_type,
*options.linear_solver_ordering,
0, /* use all the rows of the jacobian */
pp->reduced_program.get(),
&pp->error);
}
if (options.linear_solver_type == CGNR &&
options.preconditioner_type == SUBSET) {
pp->linear_solver_options.subset_preconditioner_start_row_block =
ReorderResidualBlocksByPartition(
options.residual_blocks_for_subset_preconditioner,
pp->reduced_program.get());
return ReorderProgramForSparseCholesky(
options.sparse_linear_algebra_library_type,
*options.linear_solver_ordering,
pp->linear_solver_options.subset_preconditioner_start_row_block,
pp->reduced_program.get(),
&pp->error);
}
return true;
}
// Configure and create a linear solver object. In doing so, if a
// sparse direct factorization based linear solver is being used, then
// find a fill reducing ordering and reorder the program as needed
// too.
bool SetupLinearSolver(PreprocessedProblem* pp) {
Solver::Options& options = pp->options;
pp->linear_solver_options = LinearSolver::Options();
if (!options.linear_solver_ordering) {
// If the user has not supplied a linear solver ordering, then we
// assume that they are giving all the freedom to us in choosing
// the best possible ordering. This intent can be indicated by
// putting all the parameter blocks in the same elimination group.
options.linear_solver_ordering =
CreateDefaultLinearSolverOrdering(*pp->reduced_program);
} else {
// If the user supplied an ordering, then check if the first
// elimination group is still non-empty after the reduced problem
// has been constructed.
//
// This is important for Schur type linear solvers, where the
// first elimination group is special -- it needs to be an
// independent set.
//
// If the first elimination group is empty, then we cannot use the
// user's requested linear solver (and a preconditioner as the
// case may be) so we must use a different one.
ParameterBlockOrdering* ordering = options.linear_solver_ordering.get();
const int min_group_id = ordering->MinNonZeroGroup();
ordering->Remove(pp->removed_parameter_blocks);
if (IsSchurType(options.linear_solver_type) &&
min_group_id != ordering->MinNonZeroGroup()) {
AlternateLinearSolverAndPreconditionerForSchurTypeLinearSolver(&options);
}
}
// Reorder the program to reduce fill in and improve cache coherency
// of the Jacobian.
if (!ReorderProgram(pp)) {
return false;
}
// Configure the linear solver.
pp->linear_solver_options.min_num_iterations =
options.min_linear_solver_iterations;
pp->linear_solver_options.max_num_iterations =
options.max_linear_solver_iterations;
pp->linear_solver_options.type = options.linear_solver_type;
pp->linear_solver_options.preconditioner_type = options.preconditioner_type;
pp->linear_solver_options.visibility_clustering_type =
options.visibility_clustering_type;
pp->linear_solver_options.sparse_linear_algebra_library_type =
options.sparse_linear_algebra_library_type;
pp->linear_solver_options.dense_linear_algebra_library_type =
options.dense_linear_algebra_library_type;
pp->linear_solver_options.use_explicit_schur_complement =
options.use_explicit_schur_complement;
pp->linear_solver_options.dynamic_sparsity = options.dynamic_sparsity;
pp->linear_solver_options.use_mixed_precision_solves =
options.use_mixed_precision_solves;
pp->linear_solver_options.max_num_refinement_iterations =
options.max_num_refinement_iterations;
pp->linear_solver_options.num_threads = options.num_threads;
pp->linear_solver_options.use_postordering = options.use_postordering;
pp->linear_solver_options.context = pp->problem->context();
if (IsSchurType(pp->linear_solver_options.type)) {
OrderingToGroupSizes(options.linear_solver_ordering.get(),
&pp->linear_solver_options.elimination_groups);
// Schur type solvers expect at least two elimination groups. If
// there is only one elimination group, then it is guaranteed that
// this group only contains e_blocks. Thus we add a dummy
// elimination group with zero blocks in it.
if (pp->linear_solver_options.elimination_groups.size() == 1) {
pp->linear_solver_options.elimination_groups.push_back(0);
}
if (options.linear_solver_type == SPARSE_SCHUR) {
// When using SPARSE_SCHUR, we ignore the user's postordering
// preferences in certain cases.
//
// 1. SUITE_SPARSE is the sparse linear algebra library requested
// but cholmod_camd is not available.
// 2. CX_SPARSE is the sparse linear algebra library requested.
//
// This ensures that the linear solver does not assume that a
// fill-reducing pre-ordering has been done.
//
// TODO(sameeragarwal): Implement the reordering of parameter
// blocks for CX_SPARSE.
if ((options.sparse_linear_algebra_library_type == SUITE_SPARSE &&
!SuiteSparse::
IsConstrainedApproximateMinimumDegreeOrderingAvailable()) ||
(options.sparse_linear_algebra_library_type == CX_SPARSE)) {
pp->linear_solver_options.use_postordering = true;
}
}
}
pp->linear_solver = LinearSolver::Create(pp->linear_solver_options);
return (pp->linear_solver != nullptr);
}
// Configure and create the evaluator.
bool SetupEvaluator(PreprocessedProblem* pp) {
const Solver::Options& options = pp->options;
pp->evaluator_options = Evaluator::Options();
pp->evaluator_options.linear_solver_type = options.linear_solver_type;
pp->evaluator_options.num_eliminate_blocks = 0;
if (IsSchurType(options.linear_solver_type)) {
pp->evaluator_options.num_eliminate_blocks =
options.linear_solver_ordering->group_to_elements()
.begin()
->second.size();
}
pp->evaluator_options.num_threads = options.num_threads;
pp->evaluator_options.dynamic_sparsity = options.dynamic_sparsity;
pp->evaluator_options.context = pp->problem->context();
pp->evaluator_options.evaluation_callback =
pp->reduced_program->mutable_evaluation_callback();
pp->evaluator = Evaluator::Create(
pp->evaluator_options, pp->reduced_program.get(), &pp->error);
return (pp->evaluator != nullptr);
}
// If the user requested inner iterations, then find an inner
// iteration ordering as needed and configure and create a
// CoordinateDescentMinimizer object to perform the inner iterations.
bool SetupInnerIterationMinimizer(PreprocessedProblem* pp) {
Solver::Options& options = pp->options;
if (!options.use_inner_iterations) {
return true;
}
if (pp->reduced_program->mutable_evaluation_callback()) {
pp->error = "Inner iterations cannot be used with EvaluationCallbacks";
return false;
}
// With just one parameter block, the outer iteration of the trust
// region method and inner iterations are doing exactly the same
// thing, and thus inner iterations are not needed.
if (pp->reduced_program->NumParameterBlocks() == 1) {
LOG(WARNING) << "Reduced problem only contains one parameter block."
<< "Disabling inner iterations.";
return true;
}
if (options.inner_iteration_ordering != nullptr) {
// If the user supplied an ordering, then remove the set of
// inactive parameter blocks from it
options.inner_iteration_ordering->Remove(pp->removed_parameter_blocks);
if (options.inner_iteration_ordering->NumElements() == 0) {
LOG(WARNING) << "No remaining elements in the inner iteration ordering.";
return true;
}
// Validate the reduced ordering.
if (!CoordinateDescentMinimizer::IsOrderingValid(
*pp->reduced_program,
*options.inner_iteration_ordering,
&pp->error)) {
return false;
}
} else {
// The user did not supply an ordering, so create one.
options.inner_iteration_ordering =
CoordinateDescentMinimizer::CreateOrdering(*pp->reduced_program);
}
pp->inner_iteration_minimizer =
std::make_unique<CoordinateDescentMinimizer>(pp->problem->context());
return pp->inner_iteration_minimizer->Init(*pp->reduced_program,
pp->problem->parameter_map(),
*options.inner_iteration_ordering,
&pp->error);
}
// Configure and create a TrustRegionMinimizer object.
void SetupMinimizerOptions(PreprocessedProblem* pp) {
const Solver::Options& options = pp->options;
SetupCommonMinimizerOptions(pp);
pp->minimizer_options.is_constrained =
pp->reduced_program->IsBoundsConstrained();
pp->minimizer_options.jacobian = pp->evaluator->CreateJacobian();
pp->minimizer_options.inner_iteration_minimizer =
pp->inner_iteration_minimizer;
TrustRegionStrategy::Options strategy_options;
strategy_options.linear_solver = pp->linear_solver.get();
strategy_options.initial_radius = options.initial_trust_region_radius;
strategy_options.max_radius = options.max_trust_region_radius;
strategy_options.min_lm_diagonal = options.min_lm_diagonal;
strategy_options.max_lm_diagonal = options.max_lm_diagonal;
strategy_options.trust_region_strategy_type =
options.trust_region_strategy_type;
strategy_options.dogleg_type = options.dogleg_type;
pp->minimizer_options.trust_region_strategy =
TrustRegionStrategy::Create(strategy_options);
CHECK(pp->minimizer_options.trust_region_strategy != nullptr);
}
} // namespace
bool TrustRegionPreprocessor::Preprocess(const Solver::Options& options,
ProblemImpl* problem,
PreprocessedProblem* pp) {
CHECK(pp != nullptr);
pp->options = options;
ChangeNumThreadsIfNeeded(&pp->options);
pp->problem = problem;
Program* program = problem->mutable_program();
if (!IsProgramValid(*program, &pp->error)) {
return false;
}
pp->reduced_program = program->CreateReducedProgram(
&pp->removed_parameter_blocks, &pp->fixed_cost, &pp->error);
if (pp->reduced_program.get() == nullptr) {
return false;
}
if (pp->reduced_program->NumParameterBlocks() == 0) {
// The reduced problem has no parameter or residual blocks. There
// is nothing more to do.
return true;
}
if (!SetupLinearSolver(pp) || !SetupEvaluator(pp) ||
!SetupInnerIterationMinimizer(pp)) {
return false;
}
SetupMinimizerOptions(pp);
return true;
}
} // namespace internal
} // namespace ceres
|