1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: kushalav@google.com (Avanish Kushal)
#include "ceres/visibility.h"
#include <algorithm>
#include <cmath>
#include <ctime>
#include <memory>
#include <set>
#include <unordered_map>
#include <utility>
#include <vector>
#include "ceres/block_structure.h"
#include "ceres/graph.h"
#include "ceres/pair_hash.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
using std::make_pair;
using std::max;
using std::pair;
using std::set;
using std::vector;
void ComputeVisibility(const CompressedRowBlockStructure& block_structure,
const int num_eliminate_blocks,
vector<set<int>>* visibility) {
CHECK(visibility != nullptr);
// Clear the visibility vector and resize it to hold a
// vector for each camera.
visibility->resize(0);
visibility->resize(block_structure.cols.size() - num_eliminate_blocks);
for (const auto& row : block_structure.rows) {
const vector<Cell>& cells = row.cells;
int block_id = cells[0].block_id;
// If the first block is not an e_block, then skip this row block.
if (block_id >= num_eliminate_blocks) {
continue;
}
for (int j = 1; j < cells.size(); ++j) {
int camera_block_id = cells[j].block_id - num_eliminate_blocks;
DCHECK_GE(camera_block_id, 0);
DCHECK_LT(camera_block_id, visibility->size());
(*visibility)[camera_block_id].insert(block_id);
}
}
}
std::unique_ptr<WeightedGraph<int>> CreateSchurComplementGraph(
const vector<set<int>>& visibility) {
const time_t start_time = time(nullptr);
// Compute the number of e_blocks/point blocks. Since the visibility
// set for each e_block/camera contains the set of e_blocks/points
// visible to it, we find the maximum across all visibility sets.
int num_points = 0;
for (const auto& visible : visibility) {
if (!visible.empty()) {
num_points = max(num_points, (*visible.rbegin()) + 1);
}
}
// Invert the visibility. The input is a camera->point mapping,
// which tells us which points are visible in which
// cameras. However, to compute the sparsity structure of the Schur
// Complement efficiently, its better to have the point->camera
// mapping.
vector<set<int>> inverse_visibility(num_points);
for (int i = 0; i < visibility.size(); i++) {
const set<int>& visibility_set = visibility[i];
for (int v : visibility_set) {
inverse_visibility[v].insert(i);
}
}
// Map from camera pairs to number of points visible to both cameras
// in the pair.
std::unordered_map<pair<int, int>, int, pair_hash> camera_pairs;
// Count the number of points visible to each camera/f_block pair.
for (const auto& inverse_visibility_set : inverse_visibility) {
for (auto camera1 = inverse_visibility_set.begin();
camera1 != inverse_visibility_set.end();
++camera1) {
auto camera2 = camera1;
for (++camera2; camera2 != inverse_visibility_set.end(); ++camera2) {
++(camera_pairs[make_pair(*camera1, *camera2)]);
}
}
}
auto graph = std::make_unique<WeightedGraph<int>>();
// Add vertices and initialize the pairs for self edges so that self
// edges are guaranteed. This is needed for the Canonical views
// algorithm to work correctly.
static constexpr double kSelfEdgeWeight = 1.0;
for (int i = 0; i < visibility.size(); ++i) {
graph->AddVertex(i);
graph->AddEdge(i, i, kSelfEdgeWeight);
}
// Add an edge for each camera pair.
for (const auto& camera_pair_count : camera_pairs) {
const int camera1 = camera_pair_count.first.first;
const int camera2 = camera_pair_count.first.second;
const int count = camera_pair_count.second;
DCHECK_NE(camera1, camera2);
// Static cast necessary for Windows.
const double weight =
static_cast<double>(count) /
(sqrt(static_cast<double>(visibility[camera1].size() *
visibility[camera2].size())));
graph->AddEdge(camera1, camera2, weight);
}
VLOG(2) << "Schur complement graph time: " << (time(nullptr) - start_time);
return graph;
}
} // namespace internal
} // namespace ceres
|