1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/visibility_based_preconditioner.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <set>
#include <utility>
#include <vector>
#include "Eigen/Dense"
#include "ceres/block_random_access_sparse_matrix.h"
#include "ceres/block_sparse_matrix.h"
#include "ceres/canonical_views_clustering.h"
#include "ceres/graph.h"
#include "ceres/graph_algorithms.h"
#include "ceres/linear_solver.h"
#include "ceres/schur_eliminator.h"
#include "ceres/single_linkage_clustering.h"
#include "ceres/visibility.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
using std::make_pair;
using std::pair;
using std::set;
using std::swap;
using std::vector;
// TODO(sameeragarwal): Currently these are magic weights for the
// preconditioner construction. Move these higher up into the Options
// struct and provide some guidelines for choosing them.
//
// This will require some more work on the clustering algorithm and
// possibly some more refactoring of the code.
static constexpr double kCanonicalViewsSizePenaltyWeight = 3.0;
static constexpr double kCanonicalViewsSimilarityPenaltyWeight = 0.0;
static constexpr double kSingleLinkageMinSimilarity = 0.9;
VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
const CompressedRowBlockStructure& bs, Preconditioner::Options options)
: options_(std::move(options)), num_blocks_(0), num_clusters_(0) {
CHECK_GT(options_.elimination_groups.size(), 1);
CHECK_GT(options_.elimination_groups[0], 0);
CHECK(options_.type == CLUSTER_JACOBI || options_.type == CLUSTER_TRIDIAGONAL)
<< "Unknown preconditioner type: " << options_.type;
num_blocks_ = bs.cols.size() - options_.elimination_groups[0];
CHECK_GT(num_blocks_, 0) << "Jacobian should have at least 1 f_block for "
<< "visibility based preconditioning.";
CHECK(options_.context != nullptr);
// Vector of camera block sizes
block_size_.resize(num_blocks_);
for (int i = 0; i < num_blocks_; ++i) {
block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size;
}
const time_t start_time = time(nullptr);
switch (options_.type) {
case CLUSTER_JACOBI:
ComputeClusterJacobiSparsity(bs);
break;
case CLUSTER_TRIDIAGONAL:
ComputeClusterTridiagonalSparsity(bs);
break;
default:
LOG(FATAL) << "Unknown preconditioner type";
}
const time_t structure_time = time(nullptr);
InitStorage(bs);
const time_t storage_time = time(nullptr);
InitEliminator(bs);
const time_t eliminator_time = time(nullptr);
LinearSolver::Options sparse_cholesky_options;
sparse_cholesky_options.sparse_linear_algebra_library_type =
options_.sparse_linear_algebra_library_type;
// The preconditioner's sparsity is not available in the
// preprocessor, so the columns of the Jacobian have not been
// reordered to minimize fill in when computing its sparse Cholesky
// factorization. So we must tell the SparseCholesky object to
// perform approximate minimum-degree reordering, which is done by
// setting use_postordering to true.
sparse_cholesky_options.use_postordering = true;
sparse_cholesky_ = SparseCholesky::Create(sparse_cholesky_options);
const time_t init_time = time(nullptr);
VLOG(2) << "init time: " << init_time - start_time
<< " structure time: " << structure_time - start_time
<< " storage time:" << storage_time - structure_time
<< " eliminator time: " << eliminator_time - storage_time;
}
VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() = default;
// Determine the sparsity structure of the CLUSTER_JACOBI
// preconditioner. It clusters cameras using their scene
// visibility. The clusters form the diagonal blocks of the
// preconditioner matrix.
void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
const CompressedRowBlockStructure& bs) {
vector<set<int>> visibility;
ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
CHECK_EQ(num_blocks_, visibility.size());
ClusterCameras(visibility);
cluster_pairs_.clear();
for (int i = 0; i < num_clusters_; ++i) {
cluster_pairs_.insert(make_pair(i, i));
}
}
// Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
// preconditioner. It clusters cameras using the scene visibility and
// then finds the strongly interacting pairs of clusters by
// constructing another graph with the clusters as vertices and
// approximating it with a degree-2 maximum spanning forest. The set
// of edges in this forest are the cluster pairs.
void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
const CompressedRowBlockStructure& bs) {
vector<set<int>> visibility;
ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
CHECK_EQ(num_blocks_, visibility.size());
ClusterCameras(visibility);
// Construct a weighted graph on the set of clusters, where the
// edges are the number of 3D points/e_blocks visible in both the
// clusters at the ends of the edge. Return an approximate degree-2
// maximum spanning forest of this graph.
vector<set<int>> cluster_visibility;
ComputeClusterVisibility(visibility, &cluster_visibility);
auto cluster_graph = CreateClusterGraph(cluster_visibility);
CHECK(cluster_graph != nullptr);
auto forest = Degree2MaximumSpanningForest(*cluster_graph);
CHECK(forest != nullptr);
ForestToClusterPairs(*forest, &cluster_pairs_);
}
// Allocate storage for the preconditioner matrix.
void VisibilityBasedPreconditioner::InitStorage(
const CompressedRowBlockStructure& bs) {
ComputeBlockPairsInPreconditioner(bs);
m_ = std::make_unique<BlockRandomAccessSparseMatrix>(block_size_,
block_pairs_);
}
// Call the canonical views algorithm and cluster the cameras based on
// their visibility sets. The visibility set of a camera is the set of
// e_blocks/3D points in the scene that are seen by it.
//
// The cluster_membership_ vector is updated to indicate cluster
// memberships for each camera block.
void VisibilityBasedPreconditioner::ClusterCameras(
const vector<set<int>>& visibility) {
auto schur_complement_graph = CreateSchurComplementGraph(visibility);
CHECK(schur_complement_graph != nullptr);
std::unordered_map<int, int> membership;
if (options_.visibility_clustering_type == CANONICAL_VIEWS) {
vector<int> centers;
CanonicalViewsClusteringOptions clustering_options;
clustering_options.size_penalty_weight = kCanonicalViewsSizePenaltyWeight;
clustering_options.similarity_penalty_weight =
kCanonicalViewsSimilarityPenaltyWeight;
ComputeCanonicalViewsClustering(
clustering_options, *schur_complement_graph, ¢ers, &membership);
num_clusters_ = centers.size();
} else if (options_.visibility_clustering_type == SINGLE_LINKAGE) {
SingleLinkageClusteringOptions clustering_options;
clustering_options.min_similarity = kSingleLinkageMinSimilarity;
num_clusters_ = ComputeSingleLinkageClustering(
clustering_options, *schur_complement_graph, &membership);
} else {
LOG(FATAL) << "Unknown visibility clustering algorithm.";
}
CHECK_GT(num_clusters_, 0);
VLOG(2) << "num_clusters: " << num_clusters_;
FlattenMembershipMap(membership, &cluster_membership_);
}
// Compute the block sparsity structure of the Schur complement
// matrix. For each pair of cameras contributing a non-zero cell to
// the schur complement, determine if that cell is present in the
// preconditioner or not.
//
// A pair of cameras contribute a cell to the preconditioner if they
// are part of the same cluster or if the two clusters that they
// belong have an edge connecting them in the degree-2 maximum
// spanning forest.
//
// For example, a camera pair (i,j) where i belongs to cluster1 and
// j belongs to cluster2 (assume that cluster1 < cluster2).
//
// The cell corresponding to (i,j) is present in the preconditioner
// if cluster1 == cluster2 or the pair (cluster1, cluster2) were
// connected by an edge in the degree-2 maximum spanning forest.
//
// Since we have already expanded the forest into a set of camera
// pairs/edges, including self edges, the check can be reduced to
// checking membership of (cluster1, cluster2) in cluster_pairs_.
void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
const CompressedRowBlockStructure& bs) {
block_pairs_.clear();
for (int i = 0; i < num_blocks_; ++i) {
block_pairs_.insert(make_pair(i, i));
}
int r = 0;
const int num_row_blocks = bs.rows.size();
const int num_eliminate_blocks = options_.elimination_groups[0];
// Iterate over each row of the matrix. The block structure of the
// matrix is assumed to be sorted in order of the e_blocks/point
// blocks. Thus all row blocks containing an e_block/point occur
// contiguously. Further, if present, an e_block is always the first
// parameter block in each row block. These structural assumptions
// are common to all Schur complement based solvers in Ceres.
//
// For each e_block/point block we identify the set of cameras
// seeing it. The cross product of this set with itself is the set
// of non-zero cells contributed by this e_block.
//
// The time complexity of this is O(nm^2) where, n is the number of
// 3d points and m is the maximum number of cameras seeing any
// point, which for most scenes is a fairly small number.
while (r < num_row_blocks) {
int e_block_id = bs.rows[r].cells.front().block_id;
if (e_block_id >= num_eliminate_blocks) {
// Skip the rows whose first block is an f_block.
break;
}
set<int> f_blocks;
for (; r < num_row_blocks; ++r) {
const CompressedRow& row = bs.rows[r];
if (row.cells.front().block_id != e_block_id) {
break;
}
// Iterate over the blocks in the row, ignoring the first block
// since it is the one to be eliminated and adding the rest to
// the list of f_blocks associated with this e_block.
for (int c = 1; c < row.cells.size(); ++c) {
const Cell& cell = row.cells[c];
const int f_block_id = cell.block_id - num_eliminate_blocks;
CHECK_GE(f_block_id, 0);
f_blocks.insert(f_block_id);
}
}
for (auto block1 = f_blocks.begin(); block1 != f_blocks.end(); ++block1) {
auto block2 = block1;
++block2;
for (; block2 != f_blocks.end(); ++block2) {
if (IsBlockPairInPreconditioner(*block1, *block2)) {
block_pairs_.emplace(*block1, *block2);
}
}
}
}
// The remaining rows which do not contain any e_blocks.
for (; r < num_row_blocks; ++r) {
const CompressedRow& row = bs.rows[r];
CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
for (int i = 0; i < row.cells.size(); ++i) {
const int block1 = row.cells[i].block_id - num_eliminate_blocks;
for (const auto& cell : row.cells) {
const int block2 = cell.block_id - num_eliminate_blocks;
if (block1 <= block2) {
if (IsBlockPairInPreconditioner(block1, block2)) {
block_pairs_.insert(make_pair(block1, block2));
}
}
}
}
}
VLOG(1) << "Block pair stats: " << block_pairs_.size();
}
// Initialize the SchurEliminator.
void VisibilityBasedPreconditioner::InitEliminator(
const CompressedRowBlockStructure& bs) {
LinearSolver::Options eliminator_options;
eliminator_options.elimination_groups = options_.elimination_groups;
eliminator_options.num_threads = options_.num_threads;
eliminator_options.e_block_size = options_.e_block_size;
eliminator_options.f_block_size = options_.f_block_size;
eliminator_options.row_block_size = options_.row_block_size;
eliminator_options.context = options_.context;
eliminator_ = SchurEliminatorBase::Create(eliminator_options);
const bool kFullRankETE = true;
eliminator_->Init(
eliminator_options.elimination_groups[0], kFullRankETE, &bs);
}
// Update the values of the preconditioner matrix and factorize it.
bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
const double* D) {
const time_t start_time = time(nullptr);
const int num_rows = m_->num_rows();
CHECK_GT(num_rows, 0);
// Compute a subset of the entries of the Schur complement.
eliminator_->Eliminate(
BlockSparseMatrixData(A), nullptr, D, m_.get(), nullptr);
// Try factorizing the matrix. For CLUSTER_JACOBI, this should
// always succeed modulo some numerical/conditioning problems. For
// CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as
// constructed is not positive definite. However, we will go ahead
// and try factorizing it. If it works, great, otherwise we scale
// all the cells in the preconditioner corresponding to the edges in
// the degree-2 forest and that guarantees positive
// definiteness. The proof of this fact can be found in Lemma 1 in
// "Visibility Based Preconditioning for Bundle Adjustment".
//
// Doing the factorization like this saves us matrix mass when
// scaling is not needed, which is quite often in our experience.
LinearSolverTerminationType status = Factorize();
if (status == LINEAR_SOLVER_FATAL_ERROR) {
return false;
}
// The scaling only affects the tri-diagonal case, since
// ScaleOffDiagonalBlocks only pays attention to the cells that
// belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI
// case, the preconditioner is guaranteed to be positive
// semidefinite.
if (status == LINEAR_SOLVER_FAILURE && options_.type == CLUSTER_TRIDIAGONAL) {
VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
<< "scaling";
ScaleOffDiagonalCells();
status = Factorize();
}
VLOG(2) << "Compute time: " << time(nullptr) - start_time;
return (status == LINEAR_SOLVER_SUCCESS);
}
// Consider the preconditioner matrix as meta-block matrix, whose
// blocks correspond to the clusters. Then cluster pairs corresponding
// to edges in the degree-2 forest are off diagonal entries of this
// matrix. Scaling these off-diagonal entries by 1/2 forces this
// matrix to be positive definite.
void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
for (const auto& block_pair : block_pairs_) {
const int block1 = block_pair.first;
const int block2 = block_pair.second;
if (!IsBlockPairOffDiagonal(block1, block2)) {
continue;
}
int r, c, row_stride, col_stride;
CellInfo* cell_info =
m_->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
CHECK(cell_info != nullptr)
<< "Cell missing for block pair (" << block1 << "," << block2 << ")"
<< " cluster pair (" << cluster_membership_[block1] << " "
<< cluster_membership_[block2] << ")";
// Ah the magic of tri-diagonal matrices and diagonal
// dominance. See Lemma 1 in "Visibility Based Preconditioning
// For Bundle Adjustment".
MatrixRef m(cell_info->values, row_stride, col_stride);
m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
}
}
// Compute the sparse Cholesky factorization of the preconditioner
// matrix.
LinearSolverTerminationType VisibilityBasedPreconditioner::Factorize() {
// Extract the TripletSparseMatrix that is used for actually storing
// S and convert it into a CompressedRowSparseMatrix.
const TripletSparseMatrix* tsm =
down_cast<BlockRandomAccessSparseMatrix*>(m_.get())->mutable_matrix();
std::unique_ptr<CompressedRowSparseMatrix> lhs;
const CompressedRowSparseMatrix::StorageType storage_type =
sparse_cholesky_->StorageType();
if (storage_type == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
lhs = CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm);
lhs->set_storage_type(CompressedRowSparseMatrix::UPPER_TRIANGULAR);
} else {
lhs = CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm);
lhs->set_storage_type(CompressedRowSparseMatrix::LOWER_TRIANGULAR);
}
std::string message;
return sparse_cholesky_->Factorize(lhs.get(), &message);
}
void VisibilityBasedPreconditioner::RightMultiply(const double* x,
double* y) const {
CHECK(x != nullptr);
CHECK(y != nullptr);
CHECK(sparse_cholesky_ != nullptr);
std::string message;
sparse_cholesky_->Solve(x, y, &message);
}
int VisibilityBasedPreconditioner::num_rows() const { return m_->num_rows(); }
// Classify camera/f_block pairs as in and out of the preconditioner,
// based on whether the cluster pair that they belong to is in the
// preconditioner or not.
bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
const int block1, const int block2) const {
int cluster1 = cluster_membership_[block1];
int cluster2 = cluster_membership_[block2];
if (cluster1 > cluster2) {
swap(cluster1, cluster2);
}
return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
}
bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
const int block1, const int block2) const {
return (cluster_membership_[block1] != cluster_membership_[block2]);
}
// Convert a graph into a list of edges that includes self edges for
// each vertex.
void VisibilityBasedPreconditioner::ForestToClusterPairs(
const WeightedGraph<int>& forest,
std::unordered_set<pair<int, int>, pair_hash>* cluster_pairs) const {
CHECK(cluster_pairs != nullptr);
cluster_pairs->clear();
const std::unordered_set<int>& vertices = forest.vertices();
CHECK_EQ(vertices.size(), num_clusters_);
// Add all the cluster pairs corresponding to the edges in the
// forest.
for (const int cluster1 : vertices) {
cluster_pairs->insert(make_pair(cluster1, cluster1));
const std::unordered_set<int>& neighbors = forest.Neighbors(cluster1);
for (const int cluster2 : neighbors) {
if (cluster1 < cluster2) {
cluster_pairs->insert(make_pair(cluster1, cluster2));
}
}
}
}
// The visibility set of a cluster is the union of the visibility sets
// of all its cameras. In other words, the set of points visible to
// any camera in the cluster.
void VisibilityBasedPreconditioner::ComputeClusterVisibility(
const vector<set<int>>& visibility,
vector<set<int>>* cluster_visibility) const {
CHECK(cluster_visibility != nullptr);
cluster_visibility->resize(0);
cluster_visibility->resize(num_clusters_);
for (int i = 0; i < num_blocks_; ++i) {
const int cluster_id = cluster_membership_[i];
(*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
visibility[i].end());
}
}
// Construct a graph whose vertices are the clusters, and the edge
// weights are the number of 3D points visible to cameras in both the
// vertices.
std::unique_ptr<WeightedGraph<int>>
VisibilityBasedPreconditioner::CreateClusterGraph(
const vector<set<int>>& cluster_visibility) const {
auto cluster_graph = std::make_unique<WeightedGraph<int>>();
for (int i = 0; i < num_clusters_; ++i) {
cluster_graph->AddVertex(i);
}
for (int i = 0; i < num_clusters_; ++i) {
const set<int>& cluster_i = cluster_visibility[i];
for (int j = i + 1; j < num_clusters_; ++j) {
vector<int> intersection;
const set<int>& cluster_j = cluster_visibility[j];
set_intersection(cluster_i.begin(),
cluster_i.end(),
cluster_j.begin(),
cluster_j.end(),
back_inserter(intersection));
if (intersection.size() > 0) {
// Clusters interact strongly when they share a large number
// of 3D points. The degree-2 maximum spanning forest
// algorithm, iterates on the edges in decreasing order of
// their weight, which is the number of points shared by the
// two cameras that it connects.
cluster_graph->AddEdge(i, j, intersection.size());
}
}
}
return cluster_graph;
}
// Canonical views clustering returns a std::unordered_map from vertices to
// cluster ids. Convert this into a flat array for quick lookup. It is
// possible that some of the vertices may not be associated with any
// cluster. In that case, randomly assign them to one of the clusters.
//
// The cluster ids can be non-contiguous integers. So as we flatten
// the membership_map, we also map the cluster ids to a contiguous set
// of integers so that the cluster ids are in [0, num_clusters_).
void VisibilityBasedPreconditioner::FlattenMembershipMap(
const std::unordered_map<int, int>& membership_map,
vector<int>* membership_vector) const {
CHECK(membership_vector != nullptr);
membership_vector->resize(0);
membership_vector->resize(num_blocks_, -1);
std::unordered_map<int, int> cluster_id_to_index;
// Iterate over the cluster membership map and update the
// cluster_membership_ vector assigning arbitrary cluster ids to
// the few cameras that have not been clustered.
for (const auto& m : membership_map) {
const int camera_id = m.first;
int cluster_id = m.second;
// If the view was not clustered, randomly assign it to one of the
// clusters. This preserves the mathematical correctness of the
// preconditioner. If there are too many views which are not
// clustered, it may lead to some quality degradation though.
//
// TODO(sameeragarwal): Check if a large number of views have not
// been clustered and deal with it?
if (cluster_id == -1) {
cluster_id = camera_id % num_clusters_;
}
const int index = FindWithDefault(
cluster_id_to_index, cluster_id, cluster_id_to_index.size());
if (index == cluster_id_to_index.size()) {
cluster_id_to_index[cluster_id] = index;
}
CHECK_LT(index, num_clusters_);
membership_vector->at(camera_id) = index;
}
}
} // namespace internal
} // namespace ceres
|